How to Include Latency in
SLO-based Alerting

Bjorn “Beorn” Rabenstein
KubeCon + CloudNativeCon NA, San Diego — 2019-11-20

{9 Grafana Labs

Act 1:
What this talk doesn't cover

SLI/SLO/SLA — words momentous calmly hast thou spoken...

49 Gra

fana Labs

Chapter 4 - Service Level Objectives

Service Level Objectives

Written by Chris Jones, John Wilkes, and Niall Murphy with Cody Smith
Edited by Betsy Beyer

It's impossible to manage a service correctly, let alone well, without understanding which behaviors really matter for that
service and how to measure and evaluate those behaviors. To this end, we would like to define and deliver a given level of
service to our users, whether they use an internal API or a public product.

We use intuition, experience, and an understanding of what users want to define service level indicators (SLIs), obj¢
(SLOs), and agreements (SLAs). These measurements describe basic properties of metrics that matter, what value
want those metrics to have, and how we'll react if we can't provide the expected service. Ultimately, choosing appro

metrics helps to drive the right action if something goes wrong, and also gives an SRE team confidence that a servi

Sité

Reliability
Engineering

HOW GOOGLE RUNS PRODUCTION SYSTEMS

https://www.usenix.org/conference/srecon19emea/presentation/desai

The Map Is Not the Territory: How SLOs Lead Us Astray,
and What We Can Do about It

Thursday, 2019, October 3 - 09:45-10:30
Narayan Desai, Google

Abstract:

SLOs are a wonderfully intuitive concept: a quantitative contract that describes expected service behavior. These are often used in order to
build feedback loops that prioritize reliability, communicate expected behavior when taking on a new dependency, and synchronize priorities
across teams with specialized responsibilities when problems occur, among other use cases. However, SLOs are built on an implicit model of
service behavior, with a raft of simplifying assumptions that don't universally hold.

These simplifying assumptions make SLO rules of thumb fall apart with complex modern services, which can result in bad decision making.
In this talk, | will catalog a range of these issues with SLOs and demonstrate how they cause systematic failures of SLO-based processes.
Armed with the knowledge of these failure modes, I'll present a set of best practices for understanding when SLOs produce incorrect and
unexpected results and a set of techniques for constructing robust SLOs.

Narayan Desai is an SRE at Google, where he focuses on the reliability of Google Cloud Platform Data Analytics products. He has a checkered past,
having worked on scheduling, configuration management, supercomputers, and metagenomics—always in the context of production systems.

Twitter: @nldesai

https://www.usenix.org/conference/srecon19emea/presentation/desai

https://www.usenix.org/conference/srecon19emea/presentation/hartmann-latency

Latency SLOs Done Right

Wednesday, 2019, October 2 - 11:30-12:00
Heinrich Hartmann, Circonus

Abstract:

Latency is a key indicator of service quality, and important to measure and track. However, measuring latency correctly is not easy. In
contrast to familiar metrics like CPU utilization or request counts, the "latency" of a service is not easily expressed in numbers. Percentile
metrics have become a popular means to measure the request latency, but have several shortcomings, especially when it comes to
aggregation. The situation is particularly dire if we want to use them to specify Service Level Objectives (SLOs) that quantify the performance
over a longer time horizons. In the talk we will explain these pitfalls, and suggest three practical methods how to implement effective Latency
SLOs.

Heinrich Hartmann is the Analytics Lead at Circonus. He is driving the development of analytics methods that transform monitoring
data into actionable information as part of the Circonus monitoring platform. In his prior life, Heinrich pursued an academic career
as a mathematician. Later he transitioned into computer science and worked as a consultant for a number of different companies
and research institutions.

Twitter: @HeinrichHartman

https://www.usenix.org/conference/srecon19emea/presentation/desai

Alerting on SLO breaches

Billing on SLA Breaches

https://github.com/beorn7/talks

= Chapter 6 - Monitoring Distributed Systems

Monitoring Distributed Systems

Written by Rob Ewaschuk
Edited by Betsy Beyer

Google's SRE teams have some basic principles and best practices for building successful monitoring and alerting
systems. This chapter offers guidelines for what issues should interrupt a human via a page, and how to deal with issues
that aren't serious enough to trigger a page.

Definitions

Sité

Reliability
Engineering

HOW GOOGLE RUNS PRODUCTION SYSTEMS

= Chapter 10 - Practical Alerting

Practical Alerting from Time-Series Data

Written by Jamie Wilkinson
Edited by Kavita Guliani

i May the queries flow, and the pager stay silent.))

Traditional SRE blessing

Monitoring, the bottom layer of the Hierarchy of Production Needs, is fundamental to running a stable service. Mo
enables service owners to make rational decisions about the impact of changes to the service, apply the scientific r

to incident response, and of course ensure their reason for existence: to measure the service’s alignment with busir

Sité

Reliability
Engineering

HOW GOOGLE RUNS PRODUCTION SYSTEMS

= Chapter 5 - Alerting on SLOs

Alerting on SLOs

By Steven Thurgood
with Jess Frame, Anthony Lenton,
Carmela Quinito, Anton Tolchanov, and Nejc Trdin

This chapter explains how to turn your SLOs into actionable alerts on significant events. Both our first SRE book
book talk about implementing SLOs. We believe that having good SLOs that measure the reliability of your platf¢
experienced by your customers, provides the highest-quality indication for when an on-call engineer should resp
we give specific guidance on how to turn those SLOs into alerting rules so that you can respond to problems bej
consume too much of your error budget.

Our examples present a series of increasingly complex implementations for alerting metrics and logic; we diseg

nt;

OREILLY’

Rehablhty
Workbook

Phdeard b Dadoes Doassnw

sl SOUNDCLOUD Developers Blog Twitter Jobs

Backstage Blog June 4th, 2019 D@VGIODE’I‘S
Alerting on SLOs like Pros

By Bjorn “Beorn" Rabenstein YO ur ADDS

If there is anything like a silver bullet for creating meaningful and actionable alerts Registerarew-app

with a high signal-to-noise ratio, it is alerting based on service-level objectives (Currently unavailable)
(SLOs). Fulfilling a well-defined SLO is the very definition of meeting your users’

expectations. Conversely, a certain level of service errors is OK as long as you stay

within the SLO - in other words, if the SLO grants you an error budget. Burning

through this error budget too quickly is the ultimate signal that some rectifying action
is needed. The faster the budget is burned, the more urgent it is that engineers get
involved.

https://developers.soundcloud.com/blog/alerting-on-slos

https://developers.soundcloud.com/blog/alerting-on-slos

E——— https://youtu.be/ggO4hEoQsl4 5 A &

AuToPLAY @)

Visual Basic .Net : Search in
Access Database -...

https://youtu.be/ggO4hEoQsl4

Alert Long window | Short window | for duration Burn rate Error budget
Factor consumed
Page h 5m 2m 14.4 2%
Page 6h 30m 15m 6 5%
Ticket 1d 2h 1h 3 10%
Ticket 3d 6h 1h 1 10%

= page

)
c oh
=
em 1h
o
e
5 10m
e
Q
0 1m

1% 10% 100%

TheSIt ') Error Rate
Rehablhty

Error Rate

100.0%

10.0%

1.0%

0.1%

10

— Error Rate

— Error Rate (5m)
— Error Rate (60m)
= = Alert Threshold

20

] @v

50 60 5T ; s*f%
The Slte o
Reliability

40
Time (Minutes)

VM

Alert Long window | Short window | for duration Burn rate Error budget
Factor consumed
Page 1h 5m 2m 14.4 2%
Page 6h 30m 15m 6 5% :
Ticket 1d 2h 1h 3 10%
Ticket 3d 6h 1h 1 10%
// According to https://developers.soundcloud.com/blog/alerting-on-slos :

local windows = [

{ long_period:
{ long _period:
{ long period:
{ long _period:

15

"‘1h',
'6h',
'1d',
'3d',

short_period:
short_period:
short_period:
short_period:

'Sm', for period:
'30m', for_period:
'2h', for_period:
'6h', for_period:

'2m', factor: 14.4, severity:
'15m', factor: 6, severity:
'1h', factor: 3, severity:
'3h", factor: 1, severity:

‘critical’ },

‘critical’ },
'warning' },
'warning' },

- alert: AmpelmannErrorBudgetBurn
expr: |2
(

100 * backend:http_errors_per_response:ratio_ratelh
> on (backend)
14.4 * backend:error_slo:percent

)

and

(

100 * backend:http _errors_per_response:ratio ratebm

> on (backend)
14.4 * backend:error_slo:percent
)
for: 2m
labels:
system: "{{$labels.backend}}"
severity: "critical"
window: "1h"
annotations:
summary: "a backend burns its error budget very fast”
description: "Backend {{$labels.backend}} has returned {{ $value | printf “%.2f }}% 5xx
runbook: "http://runbooks.soundcloud.com/runbooks/ampelmann/#ampelmannerrorbudgetburn™

https://github.com/metalmatze/slo-libsonnet
https://github.com/metalmatze/slo-libsonnet-web
https://promtools.matthiasloibl.Gom/ e

Matthias Loibl

metalmatze

Unfollow

* @3

Software Engineer working on monitoring
with Prometheus and Kubernetes at Red
Hat CoreOS. Interested in web
development, distributed systems and
metal.

22 Red Hat
Berlin
mail@matthiasloibl.com

o> http://matthiasloibl.com

Block or report user

Organizations

goo

SLOs with Prometheus

Multiple Burn Rate Alerts

This page will generate, with the data you provide in
the form, the necessary Prometheus alerting and
recording rules for Multiple Burn Rate which you
might know from The Site Reliability Workbook.
These rules will evaluate based on the available
metrics in the last 30 days.

Availability (Unavailability in 30d: 43min)

Availability is generally calculated based on how long a service was
unavailable over some period.

Metric
http_requests_total

The metric name to base the SLO on.
It's best to base this on metrics coming from a LoadBalancer or
Ingress.

Name Value

job

Generate

https://github.com/metalmatze/slo-libsonnet
https://github.com/metalmatze/slo-libsonnet-web
https://promtools.matthiasloibl.com/

Act 2.
Musing about latency SLOs

Or even SLAs...

n

“We guarantee an uptime of 99.9%.

“During each month, we'll serve 99.9% of
requests successfully.”

“During each month, we'll serve 99.9%' of
requests successfully. The 99th
percentile latency will be below 500ms.”

“During each month, we'll serve 99.9% of
requests successfully within 500ms.”

https://www.usenix.org/conference/srecon19emea/presentation/fouquet

SLOs for Data-Intensive Services

Wednesday, 2019, October 2 - 11:00-11:30
Yoann Fouquet, Booking.com

Abstract:

Designing and maintaining a search engine service can be challenging. One of the challenges is to set insightful SLOs where
standard availability/latency SLOs do not fit. We will go through our journey towards defining a monitoring process for such services
at Booking.com, from ineffective availability/latency SLOs to the current setup and all its advantages; travelling in a world where
providing accurate and consistent responses can be as important as availability.

Yoann is a Site Reliability Engineer at Booking.com, working on core services within the Booking.com infrastructure.

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely
available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also
free and open to everyone. Support USENIX and our commitment to Open Access.

https://www.usenix.org/conference/srecon19emea/presentation/desai

Act 3:
A pragmatic implementation

Ingredient: a partitioned histogram at the edge

Prometheus Histogram on Cortex GW
cortex_request _duration_seconds
with buckets for 1s and 2.5s (and more!)
partitioned(!) by

e status code

e method

® route

BTW: Histograms to become cheaper. Shameless plug:
https://promcon.io/2019-munich/talks/prometheus-histograms-past-present-and-future/

o .
Grafana

https://promcon.io/2019-munich/talks/prometheus-histograms-past-present-and-future/

SLO

Complete 99.9% of writes successfully in less than 1s.
Respond to 99.5% of reads in less than 2.5s.

https://github.com/beorn7/talks
https://github.com/beorn7/talks

record: namespace_job:cortex_gateway write_slo_errors_per_request:ratio_ratelh

sum by(namespace, job) (
rate(cortex_request_duration_seconds_bucket{le="1",route="push",status _code!~"5.."}[1h])
)
/
sum by(namespace, job) (
rate(cortex_request_duration_seconds_count{route="push"}[1h])

)
)

record: namespace_job:cortex_gateway read_slo_errors_per_request:ratio_ratelh

expr: |2
1 -
¢

sum by(namespace, job) (
rate(cortex_request _duration_seconds bucket{le="2.5",route="query",status code!~"5.."}[1h])
)
/
sum by(namespace, job) (
rate(cortex_request_duration_seconds_count{route="query"}[1h])

)
)

Grafana

Alert Long window | Short window | for duration Burn rate Error budget
Factor consumed
Page 1h 5m 2m 14.4 2%
Page 6h 30m 15m 6 5% :
Ticket 1d 2h 1h 3 10%
Ticket 3d 6h 1h 1 10%
// According to https://developers.soundcloud.com/blog/alerting-on-slos :

local windows = [

{ long_period:
{ long _period:
{ long period:
{ long _period:

15

"‘1h',
'6h',
'1d',
'3d',

short_period:
short_period:
short_period:
short_period:

'Sm', for period:
'30m', for_period:
'2h', for_period:
'6h', for_period:

'2m', factor: 14.4, severity:
'15m', factor: 6, severity:
'1h', factor: 3, severity:
'3h", factor: 1, severity:

‘critical’ },

‘critical’ },
'warning' },
'warning' },

alert: CortexWriteErrorBudgetBurn
expr: |2
¢
100 * namespace_job:cortex gateway write slo _errors_per_request:ratio ratelh
> 0.1 * 14.4
)

and

(

100 * namespace_job:cortex gateway write slo_errors _per_ request:ratio _ratebm
> 0.1 * 14.4

)

for: 2m
labels:
period: 1h
severity: critical
annotations:
description: '{{ $value | printf “%.2f }}% of {{ $labels.job }}'s write requests
in the last 1h are failing or too slow to meet the SLO.'
summary: Cortex burns its write error budget too fast.

Grafana

alert: CortexReadErrorBudgetBurn
expr: |2
¢
100 * namespace_job:cortex gateway read slo _errors_per request:ratio_ratelh
> 0.5 * 14.4
)

and
(
100 * namespace_job:cortex gateway read slo _errors_per request:ratio_ratebm
> 0.5 * 14.4
)
for: 2m
labels:
period: 1h
severity: critical
annotations:
description: '{{ $value | printf “%.2f }}% of {{ $labels.job }}'s read requests
in the last 1h are failing or too slow to meet the SLO.'
summary: Cortex burns its read error budget too fast.

Grafana

AL R e

Conclusions

Meaningful latency SLAs are actually quite relevant.
SLO-based alerting is a great idea.

Include latency into your SLO-based alerting.

Which could very well evolve into a real latency SLA.
Keep it as simple as possible.
But not simpler.

https://github.com/beorn7/talks

beorn@grafana.com

https://github.com/beorn7/talks

