
Flyte

Ketan Umare
Software Engineer
Lyft
 @KetanUmare
 @KetanUmare

Open Source Cloud Native Machine
Learning and Data Processing Platform

Haytham Abuelfutuh
Software Engineer
Lyft
 @HaythamAfutuh
 @HaythamAfutuh

Motivation
What motivated us to build Flyte?

Goals
Desirable properties of an ideal production ML system

Introducing Flyte
Principle offering & architecture

Demo
Everyone loves demos!

Conclusion
Learn more, get involved, & get started

Agenda

Motivation

Developing large-scale, complex ML & Data
pipelines is hard.

The overhead of infrastructure and difficulty
collaborating adds significant friction.

Motivation

Data and machine learning are converging.

There is increasing need for a single tool
for both.

Motivation

ML is more than just the model

ML
Code

Motivation

Data & infrastructure are big hurdles

Source: Sculley et al: Hidden Technical Debt in Machine Learning Systems

Configuration

Serving
Infrastructure

Data Collection

Data
Verification Monitoring

Process Management
Tools

Machine
Resource

ManagementFeature Extraction

Analysis ToolsML
Code

Motivation

ML & Data services are increasingly complex
and interdependent

Mapping

Routing

Estimated
time of
arrivals

Insurance

Shared rides

Incentive Model

Pricing

ETL Data

Feature store

Fraud

Driver

Forecasting

Rider

Autonomous
Maps

Street Imagery

Manual Map
correction

AV Simulation

3500+ Unique
Workflows

300k+ Workflow
executions per
month

1 million+ task
executions per
month

10 million+
containers
executed per
month

Flyte wants to make it easy to

Orchestrate ML & Data
Workflows

Collaborate, Reuse, and
perform ML Ops Across
Teams

Goals

Hosted, scalable and serverless
Orchestration Platform

Fabric that connects disparate compute
technologies

Extensible and Observable

Integrates best of the breed open source
solutions

Auditable and Secure

Introducing

Atomic unit of work & entrypoint to user
code

● Explicitly versioned
● Strongly typed Interface
● Arbitrarily complex: can be single

process, multi-process, distributed
or remote executions

● Extensible
● Declarative Specified in Protocol

Buffers

Tasks
Introducing Flyte

@inputs(rides=Types.Schema[...], k=Types.Integer)
@outputs(dest=[Types.String])
@spark_task(spark_conf={...})
def find_topk_destinations(ctx, spark_ctx, rides,
k, dest):
 '''
 Find the top k destinations for the given set
of rides ordered by frequency
 '''

run_shell_sort = ContainerTask(metadata=..,

 interface={inputs:{file:.}, outputs:{.}},

 container=Container(

 image=...,

 command=["/bin/sort", "-n"],

 args=["{{.inputs.file}}"],

 resources=Resources(req,limit),

 env={}, config={}))

Specify the data dependency between tasks
(as DAGs)

● Strongly typed Interface
● Composable & Dynamic Workflows can

be extended by composition of other
workflows statically or dynamically

● Versioned @Lyft by git commits
● Declarative Specified in Protocol Buffers

Decoupled Scheduling, scheduler triggers
executions at a scheduled time passing the
time as input

Workflows
Introducing Flyte @workflow_class

class TrainModel(object):
 # Accept inputs
 data = Input(Types.Schema[...])
 hyperparam = Input(Types.Float)
 # Split the dataset
 split = split8020(data=data)
 # Fit the model
 model = fit_xgboost(
 data=split.train,
 hyperparam=hyperparam)
 # Evaluate the model
 pred = eval_xgboost(data=split.val,
 m=model.outputs.v)
 # Compute the metrics
 metrics = compute_metrics(
 data=split.val,
 pred=pred.y_pred)
 # Create outputs
 model = Output(model.outputs.v)
 accuracy = Output(metrics.outputs.acc)

ML Model Train example

Serverless for users
User should only worry about business logic
● They only specify resource requirements like CPU, GPU, memory, number of

spark executors etc
● They can work on multiple versions of code
● Their code is containerized
● Multi-tenancy They do not worry about other users
● Resource pooling and Quota Downstream resource are protected from

Brown-outs
● All of Flyte’s power is available using a simple gRPC/REST interface
● They can use multiple languages, with first class support for Python - Flytekit

Introducing Flyte

Architecture Overview
Introducing Flyte

Default: Single
Kubernetes cluster with
scale-out options to
cloud services like AWS
Batch.

Architecture Overview @Lyft MultiCluster
Introducing Flyte

@Lyft: we use multiple
Kubernetes clusters to
isolate multiple failure
domains and scale-out.

FlyteAdmin supports
this mode out of the
box.

Projects, Domains & Versions
● Projects offer logical grouping of Workflows & Tasks and can be split across one or

more repositories, one or more containers
● Domains and Versions provide CI/CD like semantics to Workflows & Tasks

○ Users can push new versions to production, rollback to previous version etc.
○ Users can have workflows in integration/staging env

● Domains are configured globally for the system (by administrators)

Sharing & Accounting
● Workflows can refer to tasks and workflows from other projects
● Executions accounted/billed under the requesters project & domain (Infraspend)

Grouping & Sharing
Introducing Flyte

@workflow_class
class PipelineA(object):
 in1 = Input(Types.Integer)
 in2 = Input(Types.Integer)
 …
 out1 = Output(print2.outputs.out)

@inputs(x=Types.Integer, y=Types.Integer)
@outputs(z=Types.Integer)
@task
def my_model(x, y):
 ….

Project: ProjectA @workflow_class
class CompositePipeline(object):

 composed_wf = lps.fetch(
 "ProjectA",
 "Production",
 "PipelineA",
 "1.0.2"
)(in1, in2)

 t1 = local_task(composed_wf.outputs.out)

 t2 = tasks.fetch(
 "ProjectA",
 "Production",
 "my_model",
 "2.0.0"
)(x=t1.outputs.x, y=10)

Project: ProjectB

Shareability: Flytekit Example
Introducing Flyte

Project: ProjectA

Every task execution in Flyte is recorded by default in Catalog
Service. This enables Flyte executions to have,

Artifact Lineage
● Causal dependencies between data and processes is

tracked

Memoization
● Each task execution has a unique signature, which

includes the input values & version of code
● Repeated executions with matching signatures are

cached

Task A Task B

Task C

Task D Task E

Task F

Task G

Task H

Data Catalog: Lineage & Memoization
Introducing Flyte

W1

W2
W3

Extensive user visibility (per workflow, per project etc) - e.g grafana macro @ Lyft

Observability for the User
Introducing Flyte

Alerting and notifications
Customizable notifications, with existing integrations - pagerduty, slack and email
Coming soon Subscribable notifications for Workflows & node state transitions

Security
Per execution access controls using ServiceAccounts, IAM Roles
Oauth2 auth flow

Ofcourse we have Deep platform level visibility for Admins

Designed for ease of operations
Introducing Flyte

What: Flytekit offers easy extensibility,
takes care of the boilerplate and provides
tooling for development, testing, and
deployment.

How: These plugins are executed in
containers. Find @flytekit/contrib

Why: Useful in rapidly extending
capabilities of Flyte

@sensor_task

def my_test_task(ctx):

 '''

 E.g. sensor that waits for a hive partition

 to land. This is added as a contrib.

 '''

 return MyHivePartitionSensor()

task = xgboost_hpo_task(

 static_hyperparameters={

 "eval_metric": "auc",

 "objective": "binary:logistic",

 },

 train=train_data,

 validation=validation_data,

)

Extensible: Container-Only Flytekit Plugins
Introducing Flyte

https://github.com/lyft/flytekit/tree/master/flytekit/contrib

What: Flytekit makes it possible to author
any task type (Spark, Hive, Python, etc.)
from a Python notebook with a full set of
input/outputs. Papermill notebooks can be
run for any kernel with primitive
inputs/outputs.

How: Flytekit provides wrappings to enter
notebook environments and marshall I/O

Why: It provides an easy path from
development to production with excellent
debuggability.

task = notebook_task(

 "notebooks/train_model.ipynb",

 "inputs": {

 "train": Types.Schema(

 [("label", Types.Integer), ...]

),

 "validation": Types.Schema(

 [("label", Types.Integer), ...]

),

 },

 "outputs": {"model": Types.Blob}

)

Extensible: Notebooks and Papermill
Introducing Flyte

What: Flyte backend is extensible. This provides deep
integration into Flyte.

How: A Simple Golang interface available under
FlytePlugins (pluginmachinery)

Why: This is great for adding tasks that need

● Special visualization
● Custom logging and other information
● Guaranteed cleanup of resources
● Perfect for managing CRD’s

Extensible: Backend Plugins
Introducing Flyte

DAG Creation
Use Flytekit to create tasks & workflows

Registration
Register tasks, workflows & launch plans

Flyte UI
Visualize, launch, & monitor Flyte workflows

Sharing Tasks & Workflows
How Flyte enables collaboration

Data Catalog & Memoization
How to increase efficiency & decrease costs with Flyte DataCatalog

Docs
Where to go to learn, get started, & do more with Flyte
Flyte.org

Demo

Demo

DirtyClean

Demo

Testing
Dataset

Training
Dataset

Processed
Data

Model
Training Evaluation Best

ModelRaw Data

Overview

Demo

● Protobuf-based language specification.

● Task and workflow interfaces are strongly typed.

● Tasks and workflows are shareable & discoverable.

● Workflows are composable.

● Task outputs can be cached to speed up re-execution.

● Executions are repeatable.

Recap

Registration Process
Introducing Flyte

https://www.lucidchart.com/documents/edit/06160609-2bf2-409e-8ff7-cf7720c67863/0?callback=close&name=slides&callback_type=back&v=765&s=595.3976488488865

Executing a Registered Workflow
Introducing Flyte

https://www.lucidchart.com/documents/edit/29e12d50-270f-4068-99e1-be2dbb50146b/0?callback=close&name=slides&callback_type=back&v=668&s=581.2814960629921

Ecosystem
Introducing Flyte

I

Coming soon

Coming soon

Flyte is constantly evolving and new features are coming soon like,
● Reactive workflows (respond to data publication events)
● Enhancements to type system and Flytekit
● More extensions
● Richer data catalog

many more…

To find more details visit our docs and the Roadmap section. Also join our
fledgeling community and help us shape the future of Flyte. We appreciate
contributions and suggestions.

What’s Next
Conclusion

Thanks!
Learn more, get started & keep in
touch at Flyte.org

 @HaythamAfutuh
 @HaythamAfutuh

 @KetanUmare
 @KetanUmare

