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Motivation

Developing large-scale, complex ML & Data 
pipelines is hard. 

The overhead of infrastructure and difficulty 
collaborating adds significant friction.



Motivation

Data and machine learning are converging. 

There is increasing need for a single tool 
for both.  



Motivation

ML is more than just the model

ML 
Code



Motivation

Data & infrastructure are big hurdles

Source: Sculley et al: Hidden Technical Debt in Machine Learning Systems
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Motivation

ML & Data services are increasingly complex 
and interdependent

Mapping

Routing

Estimated 
time of 
arrivals
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3500+ Unique 
Workflows

300k+ Workflow 
executions per 
month

1 million+ task 
executions per 
month

10 million+ 
containers 
executed per 
month



Flyte wants to make it easy to

Orchestrate ML & Data 
Workflows

Collaborate, Reuse, and 
perform ML Ops Across 
Teams

Goals



Hosted, scalable and serverless 
Orchestration Platform

Fabric that connects disparate compute 
technologies

Extensible and Observable

Integrates best of the breed open source 
solutions

Auditable and Secure

Introducing 



Atomic unit of work & entrypoint to user 
code

● Explicitly versioned
● Strongly typed Interface
● Arbitrarily complex: can be single 

process, multi-process, distributed 
or remote executions

● Extensible 
● Declarative Specified in Protocol 

Buffers

Tasks
Introducing Flyte

@inputs(rides=Types.Schema[...], k=Types.Integer)
@outputs(dest=[Types.String])
@spark_task(spark_conf={...})
def find_topk_destinations(ctx, spark_ctx, rides, 
k, dest):
  '''
  Find the top k destinations for the given set 
of rides ordered by frequency
  '''

run_shell_sort = ContainerTask(metadata=..,

   interface={inputs:{file:.}, outputs:{.}},

   container=Container(

   image=...,

   command=["/bin/sort", "-n"],

   args=["{{.inputs.file}}"],

   resources=Resources(req,limit),

   env={}, config={}))



Specify the data dependency between tasks 
(as DAGs)

● Strongly typed Interface
● Composable & Dynamic Workflows can 

be extended by composition of other 
workflows statically or dynamically

● Versioned @Lyft by git commits
● Declarative Specified in Protocol Buffers

Decoupled Scheduling, scheduler triggers 
executions at a scheduled time passing the 
time as input

Workflows
Introducing Flyte @workflow_class

class TrainModel(object):
 # Accept inputs
 data = Input(Types.Schema[...])
 hyperparam = Input(Types.Float)
 # Split the dataset
 split = split8020(data=data)
 # Fit the model
 model = fit_xgboost(
             data=split.train,
             hyperparam=hyperparam)
 # Evaluate the model
 pred = eval_xgboost(data=split.val,
             m=model.outputs.v)
 # Compute the metrics
 metrics = compute_metrics(
             data=split.val,
             pred=pred.y_pred)
 # Create outputs
 model = Output(model.outputs.v)
 accuracy = Output(metrics.outputs.acc)

ML Model Train example



Serverless for users
User should only worry about business logic
● They only specify resource requirements like CPU, GPU, memory, number of 

spark executors etc
● They can work on multiple versions of code
● Their code is containerized
● Multi-tenancy They do not worry about other users
● Resource pooling and Quota Downstream resource are protected from 

Brown-outs
● All of Flyte’s power is available using a simple gRPC/REST interface
● They can use multiple languages, with first class support for Python - Flytekit

Introducing Flyte



Architecture Overview 
Introducing Flyte

Default: Single 
Kubernetes cluster with 
scale-out options to 
cloud services like AWS 
Batch.



Architecture Overview @Lyft MultiCluster 
Introducing Flyte

@Lyft: we use multiple 
Kubernetes clusters to 
isolate multiple failure 
domains and scale-out.

FlyteAdmin supports 
this mode out of the 
box.



Projects, Domains & Versions 
● Projects offer logical grouping of Workflows & Tasks and can be split across one or 

more repositories, one or more containers
● Domains and Versions provide CI/CD like semantics to Workflows & Tasks

○ Users can push new versions to production, rollback to previous version etc.
○ Users can have workflows in integration/staging env

● Domains are configured globally for the system (by administrators)

Sharing & Accounting
● Workflows can refer to tasks and workflows from other projects
● Executions accounted/billed under the requesters project & domain (Infraspend)

Grouping & Sharing
Introducing Flyte



@workflow_class
class PipelineA(object):
   in1 = Input(Types.Integer)
   in2 = Input(Types.Integer)   
   …
   out1 = Output(print2.outputs.out)

@inputs(x=Types.Integer, y=Types.Integer)
@outputs(z=Types.Integer)
@task
def my_model(x, y):
   ….

Project: ProjectA @workflow_class
class CompositePipeline(object):
  
  composed_wf = lps.fetch(
          "ProjectA",
          "Production",
          "PipelineA",
          "1.0.2"
          )(in1, in2)

  t1 = local_task(composed_wf.outputs.out)

  t2 = tasks.fetch(
            "ProjectA",
            "Production",
            "my_model",
            "2.0.0"
            )(x=t1.outputs.x, y=10)

Project: ProjectB

Shareability: Flytekit Example
Introducing Flyte

Project: ProjectA



Every task execution in Flyte is recorded by default in Catalog 
Service. This enables Flyte executions to have,

Artifact Lineage
● Causal dependencies between data and processes is 

tracked

Memoization
● Each task execution has a unique signature, which 

includes the input values & version of code
● Repeated executions with matching signatures are 

cached

Task A Task B

Task C

Task D Task E

Task F

Task G

Task H

Data Catalog: Lineage & Memoization
Introducing Flyte

W1

W2
W3



Extensive user visibility (per workflow, per project etc) - e.g grafana macro @ Lyft

Observability for the User
Introducing Flyte



Alerting and notifications
Customizable notifications, with existing integrations - pagerduty, slack and email
Coming soon Subscribable notifications for Workflows & node state transitions

Security
Per execution access controls using ServiceAccounts, IAM Roles
Oauth2 auth flow

Ofcourse we have Deep platform level visibility for Admins

Designed for ease of operations
Introducing Flyte



What: Flytekit offers easy extensibility, 
takes care of the boilerplate and provides 
tooling for development, testing, and 
deployment. 

How: These plugins are executed in 
containers. Find @flytekit/contrib

Why: Useful in rapidly extending 
capabilities of Flyte

@sensor_task

def my_test_task(ctx):

  '''

  E.g. sensor that waits for a hive partition 

  to land. This is added as a contrib.

  '''

  return MyHivePartitionSensor()

task = xgboost_hpo_task(

        static_hyperparameters={

            "eval_metric": "auc",

            "objective": "binary:logistic",

         },

        train=train_data,

        validation=validation_data,

    )

Extensible: Container-Only Flytekit Plugins
Introducing Flyte

https://github.com/lyft/flytekit/tree/master/flytekit/contrib


What: Flytekit makes it possible to author 
any task type (Spark, Hive, Python, etc.) 
from a Python notebook with a full set of 
input/outputs. Papermill notebooks can be 
run for any kernel with primitive 
inputs/outputs.

How: Flytekit provides wrappings to enter 
notebook environments and marshall I/O

Why: It provides an easy path from 
development to production with excellent  
debuggability.

task = notebook_task(

    "notebooks/train_model.ipynb",

    "inputs": {

        "train": Types.Schema(

            [("label", Types.Integer), ...]

        ),

        "validation": Types.Schema(

            [("label", Types.Integer), ...]

        ),

    },

    "outputs": {"model": Types.Blob}

)

Extensible: Notebooks and Papermill
Introducing Flyte



What: Flyte backend is extensible. This provides deep 
integration into Flyte. 

How: A Simple Golang interface available under 
FlytePlugins (pluginmachinery)

Why: This is great for adding tasks that need

● Special visualization
● Custom logging and other information
● Guaranteed cleanup of resources
● Perfect for managing CRD’s

Extensible: Backend Plugins
Introducing Flyte



DAG Creation
Use Flytekit to create tasks & workflows

Registration
Register tasks, workflows & launch plans

Flyte UI
Visualize, launch, & monitor Flyte workflows

Sharing Tasks & Workflows
How Flyte enables collaboration

Data Catalog & Memoization
How to increase efficiency & decrease costs with Flyte DataCatalog

Docs
Where to go to learn, get started, & do more with Flyte
Flyte.org

Demo



Demo

DirtyClean



Demo

Testing 
Dataset

Training 
Dataset

Processed 
Data

Model 
Training Evaluation Best 

ModelRaw Data

Overview



Demo

● Protobuf-based language specification.

● Task and workflow interfaces are strongly typed.

● Tasks and workflows are shareable & discoverable.

● Workflows are composable.

● Task outputs can be cached to speed up re-execution.

● Executions are repeatable.

Recap



Registration Process
Introducing Flyte

https://www.lucidchart.com/documents/edit/06160609-2bf2-409e-8ff7-cf7720c67863/0?callback=close&name=slides&callback_type=back&v=765&s=595.3976488488865


Executing a Registered Workflow
Introducing Flyte

https://www.lucidchart.com/documents/edit/29e12d50-270f-4068-99e1-be2dbb50146b/0?callback=close&name=slides&callback_type=back&v=668&s=581.2814960629921


Ecosystem
Introducing Flyte

I

Coming soon

Coming soon



Flyte is constantly evolving and new features are coming soon like, 
● Reactive workflows (respond to data publication events)
● Enhancements to type system and Flytekit
● More extensions
● Richer data catalog

many more…

To find more details visit our docs and the Roadmap section. Also join our 
fledgeling community and help us shape the future of Flyte. We appreciate 
contributions and suggestions.

What’s Next 
Conclusion



Thanks!
Learn more, get started & keep in 
touch at Flyte.org
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