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What is containerd?

● Small and focused container 
runtime

● Build on lessons from Docker
● Strict scope to limit features
● Modular, composable pieces
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The containerd stack

● gRPC API and Services
● Storage services

– Content store
– Snapshotters

● Runtime (runc, OCI, v2)
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Container image layers

● A copy-on-write view of files
● New files exist in the top layer
● Modified files are “copied up”
● Unmodified files stay in 

original layer
● Deleted files are hidden, not 

removed

Top layer 
(read-write)

Intermediate 
layer

(read-only)

Base layer 
(read-only)
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Core modularity

●Small, separate services
●Use services together for higher-level functionality
●Services modeled with interfaces
●Services are implemented as plugins
●Client library to tie it all together
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Extension
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containerd extension points

● Client library extensions
● “CLI”/executable plugins
● gRPC proxy plugins
● Go plugins
● Built-in plugins
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Client library extensions

● “Smart” client in Go provides 
interfaces

● Write your own 
implementations when you 
want something different!

● Requires that you control the 
client code

● Examples
– Pulling images
– I/O handling for containers
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Client library extensions – Pulling images

● Pulling images happens in the 
client library

● Network access and protocol 
support

● Default implementation is 
Docker registry

● Examples
– Distributed/peer-to-peer 

protocol like BitTorrent
– Other registry protocols like 

Amazon ECR
– Maybe you want to store 

images in git-lfs?
– Anything you can think of!
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Client library extension – default resolver

img, err := client.Pull(

    namespaces.NamespaceFromEnv(ctx),

    "my.registry/myrepository:mytag",

    containerd.WithPullUnpack)



© 2019, Amazon Web Services, Inc. or its Affiliates. 

Client library extension – Amazon ECR resolver

// import "github.com/awslabs/amazon-ecr-containerd-resolver"

resolver, _ := ecr.NewResolver()

img, err := client.Pull(

    namespaces.NamespaceFromEnv(ctx),

    "ecr.aws/arn:aws:ecr:us-west-2:123456789012:repository/myrepository:mytag",

    containerd.WithResolver(resolver),

    containerd.WithPullUnpack)
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Client library extension – Resolver interface

type Resolver interface {

    Resolve(ctx context.Context, ref string) (string, oci.Descriptor, error)

    Fetcher(ctx context.Context, ref string) (Fetcher, error)

    Pusher(ctx context.Context, ref string) (Pusher, error)

}
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Client library extension – Resolver interface

type Resolver interface {

    Resolve(ctx context.Context, ref string) (string, oci.Descriptor, error)

    Fetcher(ctx context.Context, ref string) (Fetcher, error)

    Pusher(ctx context.Context, ref string) (Pusher, error)

}

type Fetcher interface {

    Fetch(ctx context.Context, desc oci.Descriptor) (io.ReadCloser, error)

}

type Pusher interface {

    Push(ctx context.Context, desc oci.Descriptor) (content.Writer, error)

}



© 2019, Amazon Web Services, Inc. or its Affiliates. 

“CLI”/executable plugins

● Command-line interface 
conventions

● Separate program from 
containerd

● containerd defines semantics 
for STDIO, flags, working 
directory, file names, etc

● Examples
– Runtimes (OCI and “v2”)
– Log forwarding
– Stream processing/media 

transformation
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“CLI”/executable plugins – Runtimes

runc firecracker-containerd

Default runtime
Linux containers

Alternative runtime
Firecracker microVMs

Adheres to OCI standard Adheres to containerd “v2” interface

Specification covers:
● command-line arguments/flags
● working directory
● input files
● exit codes

Specification covers:
● command-line arguments/flags
● working directory
● input files
● gRPC/ttrpc on a Unix domain socket
● exit codes
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“CLI”/executable plugins – “v2” runtimes

● Binary prefixes with containerd-shim-foo-bar
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“CLI”/executable plugins – “v2” runtimes

$ containerd-shim-foo-bar start

/path/to/socket.sock

$ containerd-shim-foo-bar delete
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“CLI”/executable plugins – “v2” runtimes

● Binary prefixes with containerd-shim-foo-bar
● Be located within PATH
● Define program lifecycle through start and delete arguments
● Implement TaskService as a ttrpc service
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“CLI”/executable plugins – “v2” runtimes

type TaskService interface {
    State(context.Context, *StateRequest) (*StateResponse, error)
    Create(context.Context, *CreateTaskRequest) (*CreateTaskResponse, error)
    Start(context.Context, *StartRequest) (*StartResponse, error)
    Delete(context.Context, *DeleteRequest) (*DeleteResponse, error)
    Pids(context.Context, *PidsRequest) (*PidsResponse, error)
    Pause(context.Context, *PauseRequest) (*types1.Empty, error)
    Resume(context.Context, *ResumeRequest) (*types1.Empty, error)
    Kill(context.Context, *KillRequest) (*types1.Empty, error)
    Exec(context.Context, *ExecProcessRequest) (*types1.Empty, error)
    Update(context.Context, *UpdateTaskRequest) (*types1.Empty, error)
    Wait(context.Context, *WaitRequest) (*WaitResponse, error)
    …
}
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“CLI”/executable plugins – “v2” runtimes

● Binary prefixes with containerd-shim-foo-bar
● Be located within PATH
● Define program lifecycle through start and delete arguments
● Implement TaskService as a ttrpc service
● Can use containerd’s shim helpers
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“CLI”/executable plugins – “v2” runtimes

func main() {
    shim.Run("foo.bar", myShim)
}

func myShim(
    ctx context.Context,
    id string,
    publisher shim.Publisher,
    callback func(),
) (shim.Shim, error){
    // my implementation here!
}
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“CLI”/executable plugins – “v2” runtimes

● Binary prefixes with containerd-shim-foo-bar
● Be located within PATH
● Define program lifecycle through start and delete arguments
● Implement TaskService as a ttrpc service
● Can use containerd’s shim helpers
● sudo ctr run \
    --runtime foo.bar \
    docker.io/library/hello-world:latest \
    my-hello-world-container



© 2019, Amazon Web Services, Inc. or its Affiliates. 

gRPC proxy plugins

● Plugins run as separate processes
● Expose the service API over a Unix domain socket
● containerd acts as a pass-through
● Proxy plugin registered in containerd’s config file
● Snapshot and content services supported as proxy plugins
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gRPC proxy plugins - Snapshotters

● Snapshotters provide image- 
and container-filesystems

● Many implement a form of 
copy-on-write

● Several built in to containerd
● Out-of-process gRPC proxy 

plugins enable new 
development

● Examples
– Block-device snapshotters: 

devicemapper and lvm
– Ongoing discussion about 

network-based snapshotters
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gRPC proxy plugins - Snapshotters

● Implement Snapshotter as a gRPC service
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gRPC proxy plugins - Snapshotters

type Snapshotter interface {
    Stat(context.Context, string) (Info, error)
    Update(context.Context, Info, ...string) (Info, error)
    Usage(context.Context, string) (Usage, error)
    Mounts(context.Context, string) ([]mount.Mount, error)
    Prepare(context.Context, string, string, ...Opt) ([]mount.Mount, error)
    View(context.Context, string, string, ...Opt) ([]mount.Mount, error)
    Commit(context.Context, string, string, ...Opt) error
    Remove(context.Context, string) error
    Walk(context.Context, func(context.Context, Info) error) error
    Close() error
}
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gRPC proxy plugins - Snapshotters

● Implement Snapshotter as a gRPC service
● Registered in containerd configuration
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gRPC proxy plugins - Snapshotters

[proxy_plugins]
  [proxy_plugins.foo-snapshotter]
    type = "snapshot"
    Address = "/var/run/foo-snapshotter.sock"
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gRPC proxy plugins - Snapshotters

● Implement Snapshotter as a gRPC service
● Registered in containerd configuration
● sudo ctr run \
    --snapshotter foo-snapshotter \
    docker.io/library/hello-world:latest \
    my-hello-world-container
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Go plugins

● Similar power/flexibility to 
built-in plugins

● Can add at runtime
● Loaded from containerd’s 

plugins folder (or configured 
folder)

● Name includes OS, 
architecture, and OS-specific 
extension:
myplugin-linux-amd64.so

● Strongly tied to how 
containerd was built
– OS, architecture
– Version of Go
– Versions of every common 

package

● You’re responsible for ensuring 
compatible build environment
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Built-in plugins

● Default plugins are (mostly!) 
built-in

● In the source tree of 
containerd

● Can’t add at runtime
● Most powerful/flexible
● Most effort required

● Examples
– Default snapshotters
– Default content store
– Default diff service
– Default image service
– Default container service
– CRI plugin



© 2019, Amazon Web Services, Inc. or its Affiliates. 

Built-in plugins – Build your own

● Build in your own plugins
● ...by building your own containerd binary
● You don’t have to fork containerd!
● You solve your own build environment and distribution
● You’re responsible for keeping up to date
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Built-in plugins – Build your own

● Write your own main() function
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Built-in plugins – Build your own

func main() {
    app := command.App()
    if err := app.Run(os.Args); err != nil {
        fmt.Fprintf(os.Stderr, "containerd: %s\n", err)
        os.Exit(1)
    }
}
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Built-in plugins – Build your own

● Write your own main() function
● import the plugins you want
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Built-in plugins – Build your own

import (
    // main function
    "github.com/containerd/containerd/cmd/containerd/command"

    // builtins, see
    // https://github.com/containerd/containerd/blob/master/cmd/containerd/builtins.go
    _ "github.com/containerd/containerd/diff/walking/plugin"
    _ "github.com/containerd/containerd/gc/scheduler"
    _ "github.com/containerd/containerd/runtime/restart/monitor"
    _ "github.com/containerd/containerd/services/containers"
    _ "github.com/containerd/containerd/services/content"
    _ "github.com/containerd/containerd/services/diff"
    _ "github.com/containerd/containerd/services/events"
    _ "github.com/containerd/containerd/services/healthcheck"
    _ "github.com/containerd/containerd/services/images"
    _ "github.com/containerd/containerd/services/introspection"
    _ "github.com/containerd/containerd/services/leases"
    _ "github.com/containerd/containerd/services/namespaces"
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Built-in plugins – Build your own

    _ "github.com/containerd/containerd/services/opt"
    _ "github.com/containerd/containerd/services/snapshots"
    _ "github.com/containerd/containerd/services/tasks"
    _ "github.com/containerd/containerd/services/version"
    // Linux builtins, see
    // https://github.com/containerd/containerd/blob/master/cmd/containerd/builtins_linux.go
    _ "github.com/containerd/containerd/metrics/cgroups"
    _ "github.com/containerd/containerd/runtime/v1/linux"
    _ "github.com/containerd/containerd/runtime/v2"
    _ "github.com/containerd/containerd/runtime/v2/runc/options"

    // snapshotters
    _ "github.com/containerd/containerd/snapshots/devmapper"
    _ "github.com/containerd/containerd/snapshots/overlay"

    // Your plugin!
    _ "github.com/foobar/foobar/foobar-api”
)
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Built-in plugins – Build your own

● Write your own main() function
● import the plugins you want
● Register your plugin with init()
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Built-in plugins – Build your own

func init() {
    plugin.Register(&plugin.Registration{
        Type:     plugin.ServicePlugin,
        ID:       "myPlugin.ID",
        Requires: []plugin.Type{
            plugin.MetadataPlugin,
        },

        InitFn: func(ic *plugin.InitContext) (interface{}, error) {
            // Init your plugin here
        },
    })
}



© 2019, Amazon Web Services, Inc. or its Affiliates. © 2019, Amazon Web Services, Inc. or its Affiliates. 

Demo!

https://github.com/containerd/containerd/blob/master/cmd/containerd/builtins.go
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Demo summary

● Pull image from Amazon ECR with
amazon-ecr-containerd-resolver client library extension

● Custom containerd binary with firecracker-control built-in plugin
● devmapper snapshotter (now embedded, former gRPC proxy plugin)
● containerd-shim-aws-firecracker runtime (executable plugin) to 

run Firecracker microVMs
● Inside VM, use containerd-shim-runc-v1 (default runtime) for runc

https://github.com/containerd/containerd/blob/master/cmd/containerd/builtins_linux.go


© 2019, Amazon Web Services, Inc. or its Affiliates. © 2019, Amazon Web Services, Inc. or its Affiliates. 

Q&A
Samuel Karp and Maksym Pavlenko
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A brief note before we finish —

Session surveys provide valuable information to speakers
Feedback that is very helpful:
● Topics you were excited to learn about
● Suggestions for improving understanding and clarity

Feedback that is extremely unhelpful:
● Comments unrelated to talk content (please refer to the CNCF Code of Conduct)

The “hallway track” is always open!
Feedback and questions welcome
● skarp@amazon.com or @samuelkarp
● makpav@amazon.com or @mak_pav

For support, use the AWS Forums or contact AWS Support
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Thank you!
Samuel Karp (@samuelkarp)
Maksym Pavlenko (@mak_pav)
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