

Samuel Karp – @samuelkarp
Maksym Pavlenko – @mak_pav

Extending containerd

© 2019, Amazon Web Services, Inc. or its Affiliates.

Table of contents

• What is containerd?
• Core modularity
• Extension
• Examples!

© 2019, Amazon Web Services, Inc. or its Affiliates. © 2019, Amazon Web Services, Inc. or its Affiliates.

containerd

© 2019, Amazon Web Services, Inc. or its Affiliates.

What is containerd?

● Small and focused container
runtime

● Build on lessons from Docker
● Strict scope to limit features
● Modular, composable pieces

© 2019, Amazon Web Services, Inc. or its Affiliates.

The containerd stack

● gRPC API and Services
● Storage services

– Content store
– Snapshotters

● Runtime (runc, OCI, v2)

gRPC Metrics

Storage

Content Snapshot Diff

Metadata

Images Containers Tasks Events

RuntimesRuntimes

© 2019, Amazon Web Services, Inc. or its Affiliates.

The containerd stack

● gRPC API and Services
● Storage services

– Content store
– Snapshotters

● Runtime (runc, OCI, v2)

gRPC Metrics

Storage

Content Snapshot Diff

Metadata

Images Containers Tasks Events

RuntimesRuntimes

© 2019, Amazon Web Services, Inc. or its Affiliates.

The containerd stack

● gRPC API and Services
● Storage services

– Content store
– Snapshotters

● Runtime (runc, OCI, v2)

gRPC Metrics

Storage

Content Snapshot Diff

Metadata

Images Containers Tasks Events

RuntimesRuntimes

© 2019, Amazon Web Services, Inc. or its Affiliates.

Container image layers

● A copy-on-write view of files
● New files exist in the top layer
● Modified files are “copied up”
● Unmodified files stay in

original layer
● Deleted files are hidden, not

removed

Top layer
(read-write)

Intermediate
layer

(read-only)

Base layer
(read-only)

© 2019, Amazon Web Services, Inc. or its Affiliates.

The containerd stack

● gRPC API and Services
● Storage services

– Content store
– Snapshotters

● Runtime (runc, OCI, v2)

gRPC Metrics

Storage

Content Snapshot Diff

Metadata

Images Containers Tasks Events

RuntimesRuntimes

© 2019, Amazon Web Services, Inc. or its Affiliates.

The containerd stack

● gRPC API and Services
● Storage services

– Content store
– Snapshotters

● Runtime (runc, OCI, v2)

gRPC Metrics

Storage

Content Snapshot Diff

Metadata

Images Containers Tasks Events

RuntimesRuntimes

© 2019, Amazon Web Services, Inc. or its Affiliates.

Core modularity

●Small, separate services
●Use services together for higher-level functionality
●Services modeled with interfaces
●Services are implemented as plugins
●Client library to tie it all together

© 2019, Amazon Web Services, Inc. or its Affiliates. © 2019, Amazon Web Services, Inc. or its Affiliates.

Extension

© 2019, Amazon Web Services, Inc. or its Affiliates.

containerd extension points

● Client library extensions
● “CLI”/executable plugins
● gRPC proxy plugins
● Go plugins
● Built-in plugins

© 2019, Amazon Web Services, Inc. or its Affiliates.

Client library extensions

● “Smart” client in Go provides
interfaces

● Write your own
implementations when you
want something different!

● Requires that you control the
client code

● Examples
– Pulling images
– I/O handling for containers

© 2019, Amazon Web Services, Inc. or its Affiliates.

Client library extensions – Pulling images

● Pulling images happens in the
client library

● Network access and protocol
support

● Default implementation is
Docker registry

● Examples
– Distributed/peer-to-peer

protocol like BitTorrent
– Other registry protocols like

Amazon ECR
– Maybe you want to store

images in git-lfs?
– Anything you can think of!

© 2019, Amazon Web Services, Inc. or its Affiliates.

Client library extension – default resolver

img, err := client.Pull(

 namespaces.NamespaceFromEnv(ctx),

 "my.registry/myrepository:mytag",

 containerd.WithPullUnpack)

© 2019, Amazon Web Services, Inc. or its Affiliates.

Client library extension – Amazon ECR resolver

// import "github.com/awslabs/amazon-ecr-containerd-resolver"

resolver, _ := ecr.NewResolver()

img, err := client.Pull(

 namespaces.NamespaceFromEnv(ctx),

 "ecr.aws/arn:aws:ecr:us-west-2:123456789012:repository/myrepository:mytag",

 containerd.WithResolver(resolver),

 containerd.WithPullUnpack)

© 2019, Amazon Web Services, Inc. or its Affiliates.

Client library extension – Resolver interface

type Resolver interface {

 Resolve(ctx context.Context, ref string) (string, oci.Descriptor, error)

 Fetcher(ctx context.Context, ref string) (Fetcher, error)

 Pusher(ctx context.Context, ref string) (Pusher, error)

}

© 2019, Amazon Web Services, Inc. or its Affiliates.

Client library extension – Resolver interface

type Resolver interface {

 Resolve(ctx context.Context, ref string) (string, oci.Descriptor, error)

 Fetcher(ctx context.Context, ref string) (Fetcher, error)

 Pusher(ctx context.Context, ref string) (Pusher, error)

}

type Fetcher interface {

 Fetch(ctx context.Context, desc oci.Descriptor) (io.ReadCloser, error)

}

© 2019, Amazon Web Services, Inc. or its Affiliates.

Client library extension – Resolver interface

type Resolver interface {

 Resolve(ctx context.Context, ref string) (string, oci.Descriptor, error)

 Fetcher(ctx context.Context, ref string) (Fetcher, error)

 Pusher(ctx context.Context, ref string) (Pusher, error)

}

type Fetcher interface {

 Fetch(ctx context.Context, desc oci.Descriptor) (io.ReadCloser, error)

}

type Pusher interface {

 Push(ctx context.Context, desc oci.Descriptor) (content.Writer, error)

}

© 2019, Amazon Web Services, Inc. or its Affiliates.

“CLI”/executable plugins

● Command-line interface
conventions

● Separate program from
containerd

● containerd defines semantics
for STDIO, flags, working
directory, file names, etc

● Examples
– Runtimes (OCI and “v2”)
– Log forwarding
– Stream processing/media

transformation

© 2019, Amazon Web Services, Inc. or its Affiliates.

“CLI”/executable plugins – Runtimes

runc firecracker-containerd

Default runtime
Linux containers

Alternative runtime
Firecracker microVMs

Adheres to OCI standard Adheres to containerd “v2” interface

Specification covers:
● command-line arguments/flags
● working directory
● input files
● exit codes

Specification covers:
● command-line arguments/flags
● working directory
● input files
● gRPC/ttrpc on a Unix domain socket
● exit codes

© 2019, Amazon Web Services, Inc. or its Affiliates.

“CLI”/executable plugins – “v2” runtimes

● Binary prefixes with containerd-shim-foo-bar

© 2019, Amazon Web Services, Inc. or its Affiliates.

“CLI”/executable plugins – “v2” runtimes

● Binary prefixes with containerd-shim-foo-bar
● Be located within PATH

© 2019, Amazon Web Services, Inc. or its Affiliates.

“CLI”/executable plugins – “v2” runtimes

● Binary prefixes with containerd-shim-foo-bar
● Be located within PATH
● Define program lifecycle through start and delete arguments

© 2019, Amazon Web Services, Inc. or its Affiliates.

“CLI”/executable plugins – “v2” runtimes

$ containerd-shim-foo-bar start

/path/to/socket.sock

$ containerd-shim-foo-bar delete

© 2019, Amazon Web Services, Inc. or its Affiliates.

“CLI”/executable plugins – “v2” runtimes

● Binary prefixes with containerd-shim-foo-bar
● Be located within PATH
● Define program lifecycle through start and delete arguments
● Implement TaskService as a ttrpc service

© 2019, Amazon Web Services, Inc. or its Affiliates.

“CLI”/executable plugins – “v2” runtimes

type TaskService interface {
 State(context.Context, *StateRequest) (*StateResponse, error)
 Create(context.Context, *CreateTaskRequest) (*CreateTaskResponse, error)
 Start(context.Context, *StartRequest) (*StartResponse, error)
 Delete(context.Context, *DeleteRequest) (*DeleteResponse, error)
 Pids(context.Context, *PidsRequest) (*PidsResponse, error)
 Pause(context.Context, *PauseRequest) (*types1.Empty, error)
 Resume(context.Context, *ResumeRequest) (*types1.Empty, error)
 Kill(context.Context, *KillRequest) (*types1.Empty, error)
 Exec(context.Context, *ExecProcessRequest) (*types1.Empty, error)
 Update(context.Context, *UpdateTaskRequest) (*types1.Empty, error)
 Wait(context.Context, *WaitRequest) (*WaitResponse, error)
 …
}

© 2019, Amazon Web Services, Inc. or its Affiliates.

“CLI”/executable plugins – “v2” runtimes

● Binary prefixes with containerd-shim-foo-bar
● Be located within PATH
● Define program lifecycle through start and delete arguments
● Implement TaskService as a ttrpc service
● Can use containerd’s shim helpers

© 2019, Amazon Web Services, Inc. or its Affiliates.

“CLI”/executable plugins – “v2” runtimes

func main() {
 shim.Run("foo.bar", myShim)
}

func myShim(
 ctx context.Context,
 id string,
 publisher shim.Publisher,
 callback func(),
) (shim.Shim, error){
 // my implementation here!
}

© 2019, Amazon Web Services, Inc. or its Affiliates.

“CLI”/executable plugins – “v2” runtimes

● Binary prefixes with containerd-shim-foo-bar
● Be located within PATH
● Define program lifecycle through start and delete arguments
● Implement TaskService as a ttrpc service
● Can use containerd’s shim helpers
● sudo ctr run \
 --runtime foo.bar \
 docker.io/library/hello-world:latest \
 my-hello-world-container

© 2019, Amazon Web Services, Inc. or its Affiliates.

gRPC proxy plugins

● Plugins run as separate processes
● Expose the service API over a Unix domain socket
● containerd acts as a pass-through
● Proxy plugin registered in containerd’s config file
● Snapshot and content services supported as proxy plugins

© 2019, Amazon Web Services, Inc. or its Affiliates.

gRPC proxy plugins - Snapshotters

● Snapshotters provide image-
and container-filesystems

● Many implement a form of
copy-on-write

● Several built in to containerd
● Out-of-process gRPC proxy

plugins enable new
development

● Examples
– Block-device snapshotters:

devicemapper and lvm
– Ongoing discussion about

network-based snapshotters

© 2019, Amazon Web Services, Inc. or its Affiliates.

gRPC proxy plugins - Snapshotters

● Implement Snapshotter as a gRPC service

© 2019, Amazon Web Services, Inc. or its Affiliates.

gRPC proxy plugins - Snapshotters

type Snapshotter interface {
 Stat(context.Context, string) (Info, error)
 Update(context.Context, Info, ...string) (Info, error)
 Usage(context.Context, string) (Usage, error)
 Mounts(context.Context, string) ([]mount.Mount, error)
 Prepare(context.Context, string, string, ...Opt) ([]mount.Mount, error)
 View(context.Context, string, string, ...Opt) ([]mount.Mount, error)
 Commit(context.Context, string, string, ...Opt) error
 Remove(context.Context, string) error
 Walk(context.Context, func(context.Context, Info) error) error
 Close() error
}

© 2019, Amazon Web Services, Inc. or its Affiliates.

gRPC proxy plugins - Snapshotters

● Implement Snapshotter as a gRPC service
● Registered in containerd configuration

© 2019, Amazon Web Services, Inc. or its Affiliates.

gRPC proxy plugins - Snapshotters

[proxy_plugins]
 [proxy_plugins.foo-snapshotter]
 type = "snapshot"
 Address = "/var/run/foo-snapshotter.sock"

© 2019, Amazon Web Services, Inc. or its Affiliates.

gRPC proxy plugins - Snapshotters

● Implement Snapshotter as a gRPC service
● Registered in containerd configuration
● sudo ctr run \
 --snapshotter foo-snapshotter \
 docker.io/library/hello-world:latest \
 my-hello-world-container

© 2019, Amazon Web Services, Inc. or its Affiliates.

Go plugins

● Similar power/flexibility to
built-in plugins

● Can add at runtime
● Loaded from containerd’s

plugins folder (or configured
folder)

● Name includes OS,
architecture, and OS-specific
extension:
myplugin-linux-amd64.so

● Strongly tied to how
containerd was built
– OS, architecture
– Version of Go
– Versions of every common

package

● You’re responsible for ensuring
compatible build environment

© 2019, Amazon Web Services, Inc. or its Affiliates.

Built-in plugins

● Default plugins are (mostly!)
built-in

● In the source tree of
containerd

● Can’t add at runtime
● Most powerful/flexible
● Most effort required

● Examples
– Default snapshotters
– Default content store
– Default diff service
– Default image service
– Default container service
– CRI plugin

© 2019, Amazon Web Services, Inc. or its Affiliates.

Built-in plugins – Build your own

● Build in your own plugins
● ...by building your own containerd binary
● You don’t have to fork containerd!
● You solve your own build environment and distribution
● You’re responsible for keeping up to date

© 2019, Amazon Web Services, Inc. or its Affiliates.

Built-in plugins – Build your own

● Write your own main() function

© 2019, Amazon Web Services, Inc. or its Affiliates.

Built-in plugins – Build your own

func main() {
 app := command.App()
 if err := app.Run(os.Args); err != nil {
 fmt.Fprintf(os.Stderr, "containerd: %s\n", err)
 os.Exit(1)
 }
}

© 2019, Amazon Web Services, Inc. or its Affiliates.

Built-in plugins – Build your own

● Write your own main() function
● import the plugins you want

© 2019, Amazon Web Services, Inc. or its Affiliates.

Built-in plugins – Build your own

import (
 // main function
 "github.com/containerd/containerd/cmd/containerd/command"

 // builtins, see
 // https://github.com/containerd/containerd/blob/master/cmd/containerd/builtins.go
 _ "github.com/containerd/containerd/diff/walking/plugin"
 _ "github.com/containerd/containerd/gc/scheduler"
 _ "github.com/containerd/containerd/runtime/restart/monitor"
 _ "github.com/containerd/containerd/services/containers"
 _ "github.com/containerd/containerd/services/content"
 _ "github.com/containerd/containerd/services/diff"
 _ "github.com/containerd/containerd/services/events"
 _ "github.com/containerd/containerd/services/healthcheck"
 _ "github.com/containerd/containerd/services/images"
 _ "github.com/containerd/containerd/services/introspection"
 _ "github.com/containerd/containerd/services/leases"
 _ "github.com/containerd/containerd/services/namespaces"

© 2019, Amazon Web Services, Inc. or its Affiliates.

Built-in plugins – Build your own

 _ "github.com/containerd/containerd/services/opt"
 _ "github.com/containerd/containerd/services/snapshots"
 _ "github.com/containerd/containerd/services/tasks"
 _ "github.com/containerd/containerd/services/version"
 // Linux builtins, see
 // https://github.com/containerd/containerd/blob/master/cmd/containerd/builtins_linux.go
 _ "github.com/containerd/containerd/metrics/cgroups"
 _ "github.com/containerd/containerd/runtime/v1/linux"
 _ "github.com/containerd/containerd/runtime/v2"
 _ "github.com/containerd/containerd/runtime/v2/runc/options"

 // snapshotters
 _ "github.com/containerd/containerd/snapshots/devmapper"
 _ "github.com/containerd/containerd/snapshots/overlay"

 // Your plugin!
 _ "github.com/foobar/foobar/foobar-api”
)

© 2019, Amazon Web Services, Inc. or its Affiliates.

Built-in plugins – Build your own

● Write your own main() function
● import the plugins you want
● Register your plugin with init()

© 2019, Amazon Web Services, Inc. or its Affiliates.

Built-in plugins – Build your own

func init() {
 plugin.Register(&plugin.Registration{
 Type: plugin.ServicePlugin,
 ID: "myPlugin.ID",
 Requires: []plugin.Type{
 plugin.MetadataPlugin,
 },

 InitFn: func(ic *plugin.InitContext) (interface{}, error) {
 // Init your plugin here
 },
 })
}

© 2019, Amazon Web Services, Inc. or its Affiliates. © 2019, Amazon Web Services, Inc. or its Affiliates.

Demo!

https://github.com/containerd/containerd/blob/master/cmd/containerd/builtins.go

© 2019, Amazon Web Services, Inc. or its Affiliates.

Demo summary

● Pull image from Amazon ECR with
amazon-ecr-containerd-resolver client library extension

● Custom containerd binary with firecracker-control built-in plugin
● devmapper snapshotter (now embedded, former gRPC proxy plugin)
● containerd-shim-aws-firecracker runtime (executable plugin) to

run Firecracker microVMs
● Inside VM, use containerd-shim-runc-v1 (default runtime) for runc

https://github.com/containerd/containerd/blob/master/cmd/containerd/builtins_linux.go

© 2019, Amazon Web Services, Inc. or its Affiliates. © 2019, Amazon Web Services, Inc. or its Affiliates.

Q&A
Samuel Karp and Maksym Pavlenko

© 2019, Amazon Web Services, Inc. or its Affiliates.

A brief note before we finish —

Session surveys provide valuable information to speakers
Feedback that is very helpful:
● Topics you were excited to learn about
● Suggestions for improving understanding and clarity

Feedback that is extremely unhelpful:
● Comments unrelated to talk content (please refer to the CNCF Code of Conduct)

The “hallway track” is always open!
Feedback and questions welcome
● skarp@amazon.com or @samuelkarp
● makpav@amazon.com or @mak_pav

For support, use the AWS Forums or contact AWS Support

© 2019, Amazon Web Services, Inc. or its Affiliates. © 2019, Amazon Web Services, Inc. or its Affiliates.

Thank you!
Samuel Karp (@samuelkarp)
Maksym Pavlenko (@mak_pav)

	Slide 2
	Slide 3
	Table of contents
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Bullet list one column
	Slide 16
	Bullet list two column
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Q&A_clipboard0
	Slide 57
	Thank you!

