
Education as a Service
Containerization and Orchestration of CS50 IDE

David J. Malan
malan@harvard.edu

Kareem Zidane
kzidane@cs50.harvard.edu

cs50.ly/kubecon

mailto:malan@harvard.edu
mailto:kzidane@cs50.harvard.edu
https://cs50.ly/kubecon




edx.org/cs50

https://edx.org/cs50




Scale
● 1,000 students on campus
● 1,000,000 registrants online



Scale
● 30,000 active per month





On-Campus Cluster
1989–2007





load balancer

serverserverserverserver



Off-Campus Cloud
2008–2010



load balancer

VMVMVMVM



Client-Side Appliance
2011–2014





Cloud-Based IDE
2015–



CS50 IDE
ide.cs50.io

https://ide.cs50.io/
































AWS Cloud9
aws.amazon.com/cloud9

https://aws.amazon.com/cloud9/




Versions
1. EC2 for Compute, EBS for Storage
2. S3 for Storage
3. Kubernetes for Orchestration



Cloud9 IDE



Compute

Cloud9 IDE



Compute

Cloud9 IDE



SSH

Compute

Cloud9 IDE



SSH

EC2 instance

Cloud9 IDE



Version 1
EC2 for Compute, EBS for Storage



us-east-1a



us-east-1a

us-east-1b

us-east-1



us-east-1a

us-east-1b

us-east-1

us-west-2a

us-west-2b

us-west-2



Implementation Details
1. Get available EC2 instance from pool
2. Create user’s EBS volume and attach to instance
3. Format and mount volume
4. Start Docker container, mount volume, expose ports
5. Connect IDE to container using SSH
6. Redirect user to IDE



SSH

EC2 instance

Cloud9 IDE

EBS volumeContainer



● Maintaining pools of EC2 instances

Challenges with EC2 for Compute



● Maintaining pools of EC2 instances
● Using SSM to run commands on EC2 instances

Challenges with EC2 for Compute



● Maintaining pools of EC2 instances
● Using SSM to run commands on EC2 instances
● Allocating entire EC2 instance for user

Challenges with EC2 for Compute



● Maintaining pools of EC2 instances
● Using SSM to run commands on EC2 instances
● Allocating entire EC2 instance for user
● Cleaning up after session ends

○ Terminating EC2 instance
○ Waiting for user’s EBS volume to be detached

Challenges with EC2 for Compute



● Maintaining pools of EC2 instances
● Using SSM to run commands on EC2 instances
● Allocating entire EC2 instance for user
● Cleaning up after session ends

○ Terminating EC2 instance
○ Waiting for user’s EBS volume to be detached

● Getting different hostname per session

Challenges with EC2 for Compute



● Maintaining pools of EC2 instances
● Using SSM to run commands on EC2 instances
● Allocating entire EC2 instance for user
● Cleaning up after session ends

○ Terminating EC2 instance
○ Waiting for user’s EBS volume to be detached

● Getting different hostname per session
● Removing instances temporarily to update the Docker image

Challenges with EC2 for Compute



Challenges with EBS for Storage
● Provisioning a volume per user wasn’t cost-effective



Challenges with EBS for Storage
● Provisioning a volume per user wasn’t cost-effective
● Assigning availability zone to each user was limiting



Version 2
S3 for Storage



SSH

EC2 instance

Cloud9 IDE

S3Container



Challenges with S3 for Storage
● Setting up and refreshing credentials on the EC2 instance added complexity



Challenges with S3 for Storage
● Setting up and refreshing credentials on the EC2 instance added complexity
● Downloading user’s data initially was slow



Challenges with S3 for Storage
● Setting up and refreshing credentials on the EC2 instance added complexity
● Downloading user’s data initially was slow
● Uploading user’s data periodically was fragile



Challenges with S3 for Storage
● Setting up and refreshing credentials on the EC2 instance added complexity
● Downloading user’s data initially was slow
● Uploading user’s data periodically was fragile
● Limiting storage size per user wasn’t easy



Version 3?
AWS Fargate for Orchestration



Version 3?
AWS ECS for Orchestration



Version 3
Kubernetes for Orchestration



Creating an IDE per User
1. Create a namespace
2. Create a persistent volume claim (PVC)
3. Create a single-container pod, mount PVC, public SSH key
4. Connect IDE to container using SSH
5. Redirect user to their IDE



- Maintaining pools of EC2 instances

Solutions with Kubernetes



- Maintaining pools of EC2 instances
+ Managing nodes using Kubernetes

Solutions with Kubernetes



- Using SSM to run commands on EC2 instances

Solutions with Kubernetes



- Using SSM to run commands on EC2 instances
+ Using the Kubernetes API to create the resources needed

Solutions with Kubernetes



- Allocating entire EC2 instance for user

Solutions with Kubernetes



- Allocating entire EC2 instance for user
+ Running multiple containers on the same host

Solutions with Kubernetes



- Cleaning up after session ends
- Terminating EC2 instance
- Waiting for user’s EBS volume to be detached

Solutions with Kubernetes



- Cleaning up after session ends
- Terminating EC2 instance
- Waiting for user’s EBS volume to be detached

+ Killing the container

Solutions with Kubernetes



- Getting different hostname per session

Solutions with Kubernetes



- Getting different hostname per session
+ Using CoreDNS and a proxy to resolve hostnames to private IPs 

Solutions with Kubernetes



- Removing instances temporarily to update the Docker image

Solutions with Kubernetes



- Removing instances temporarily to update the Docker image
+ Pulling images using a DaemonSet

Solutions with Kubernetes



Solutions with Portworx
- Provisioning a volume per user wasn’t cost-effective



Solutions with Portworx
- Provisioning a volume per user wasn’t cost-effective
+ Provisioning storage thinly
+ Taking snapshots to S3



Solutions with Portworx
- Assigning availability zone to each user was limiting



Solutions with Portworx
- Assigning availability zone to each user was limiting
+ Abstracting away EBS provisioning



Solutions with Portworx
- Setting up and refreshing credentials on the EC2 instance added complexity
- Downloading user’s data initially was slow
- Uploading user’s data periodically was fragile
- Limiting storage size per user wasn’t easy



Solutions with Portworx
- Setting up and refreshing credentials on the EC2 instance added complexity
- Downloading user’s data initially was slow
- Uploading user’s data periodically was fragile
- Limiting storage size per user wasn’t easy
+ Using Portworx volumes



Worker node

Container

EBS volumes
for storage



Worker node

Container

EBS volumes
for storage

S3 
for snapshots



SSH

Worker node

Cloud9 IDE

Container



SSH

Worker node

Cloud9 IDE

Container

Proxy



SSH

Worker node

Cloud9 IDE

Container

Proxy

Cluster



SSH

Worker node

Cloud9 IDE

Container

Proxy

Cluster





Future Work
● Improved fraud detection and prevention 
● Multiple clusters in different regions
● Multiple IDEs per user
● ...



Education as a Service
Containerization and Orchestration of CS50 IDE

David J. Malan
malan@harvard.edu

Kareem Zidane
kzidane@cs50.harvard.edu

cs50.ly/kubecon

mailto:malan@harvard.edu
mailto:kzidane@cs50.harvard.edu
https://cs50.ly/kubecon

