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Scale
● 1,000 students on campus
● 1,000,000 registrants online



Scale
● 30,000 active per month





On-Campus Cluster
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Off-Campus Cloud
2008–2010
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Client-Side Appliance
2011–2014





Cloud-Based IDE
2015–



CS50 IDE
ide.cs50.io
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AWS Cloud9
aws.amazon.com/cloud9
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Versions
1. EC2 for Compute, EBS for Storage
2. S3 for Storage
3. Kubernetes for Orchestration
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Version 1
EC2 for Compute, EBS for Storage
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Implementation Details
1. Get available EC2 instance from pool
2. Create user’s EBS volume and attach to instance
3. Format and mount volume
4. Start Docker container, mount volume, expose ports
5. Connect IDE to container using SSH
6. Redirect user to IDE
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● Maintaining pools of EC2 instances

Challenges with EC2 for Compute
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Challenges with EBS for Storage
● Provisioning a volume per user wasn’t cost-effective
● Assigning availability zone to each user was limiting



Version 2
S3 for Storage
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Challenges with S3 for Storage
● Setting up and refreshing credentials on the EC2 instance added complexity
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Version 3?
AWS Fargate for Orchestration



Version 3?
AWS ECS for Orchestration



Version 3
Kubernetes for Orchestration



Creating an IDE per User
1. Create a namespace
2. Create a persistent volume claim (PVC)
3. Create a single-container pod, mount PVC, public SSH key
4. Connect IDE to container using SSH
5. Redirect user to their IDE
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- Using SSM to run commands on EC2 instances
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- Using SSM to run commands on EC2 instances
+ Using the Kubernetes API to create the resources needed

Solutions with Kubernetes
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- Allocating entire EC2 instance for user
+ Running multiple containers on the same host
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- Cleaning up after session ends
- Terminating EC2 instance
- Waiting for user’s EBS volume to be detached

+ Killing the container
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- Getting different hostname per session
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- Getting different hostname per session
+ Using CoreDNS and a proxy to resolve hostnames to private IPs 

Solutions with Kubernetes



- Removing instances temporarily to update the Docker image

Solutions with Kubernetes



- Removing instances temporarily to update the Docker image
+ Pulling images using a DaemonSet

Solutions with Kubernetes
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- Provisioning a volume per user wasn’t cost-effective



Solutions with Portworx
- Provisioning a volume per user wasn’t cost-effective
+ Provisioning storage thinly
+ Taking snapshots to S3
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Solutions with Portworx
- Assigning availability zone to each user was limiting
+ Abstracting away EBS provisioning
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Solutions with Portworx
- Setting up and refreshing credentials on the EC2 instance added complexity
- Downloading user’s data initially was slow
- Uploading user’s data periodically was fragile
- Limiting storage size per user wasn’t easy
+ Using Portworx volumes
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Future Work
● Improved fraud detection and prevention 
● Multiple clusters in different regions
● Multiple IDEs per user
● ...
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