
Developer Experience on
Continuous Delivery

Euccas Chen

Building a CD system for k8s that developers LOVE

Tobi Ogunnaike

Software Engineer Software Engineer

Agenda

1. Build a CD system for k8s

2. Adoption and migration

3. Lessons we learned

Kubernetes at Pinterest

201820172016 2019

First Docker Project

First K8S Cluster

K8S Clusters for Key
Services

Pinterest CRDs

CRDs and Controllers

CD on K8S

K8S Cluster Scalability,
Stability, Visibility

Custom resources and controllers

CRD, 25 lines K8s resource,
380 lines

Translated by
controller

● Model unique workloads

● Inject runtime support

● Simplified config

● 6 CRD types

Pinterest CRD

Current deployment system

https://github.com/pinterest/teletraan

● Deploy code to VMs

● Running since 2016

● 1K services

● 5K deploys / day

Teletraan

https://github.com/pinterest/teletraan

 Hermez { Design, Build }
 Tl;dr: We are building a new Continuous Delivery system for
 Kubernetes at Pinterest.

Deploying to k8s: Challenges
What problems are we solving?

Complexity Operational toil Pinterest specific

Deploying to k8s: What we want

Make it easy

Abstract away
complexity

Minimal configs

Single interface

End to end

From code commits
to deployment

Visibility

Debuggability

Customization

Integrate with existing
infra systems

Deployment pipelines

Migrate from
Teletraan

Existing Solutions ?

kubectl

pcloud

Introducing Hermez

1. The user-facing system for CD

2. Kubernetes first

3. Delightful developer experience

Hermez

Workloads
Easy configuration
● Code repository
● K8s config file

Workload types
● K8s: workload types defined by

Pinterest CRDs
● Data streaming, Teletraan

Operation support
● Workload healthiness, metrics, config

change audit trail, authZ, notification

Deployments
Deploy commits and PRs
● Rollback, hotfix
● Scale a deployment: manual, auto-scaling

Continuous Delivery pipelines
● Integrate with Spinnaker to run pipelines

Observability
● Current running version, deployment details
● K8s: Pod and container status, events, logs
● Deployment history

CI Integration
Build pipelines
● Support individual service’s repo and

monorepos
● Build container images
● Publish k8s artifacts

Bridge CI and CD
● Visualize the process of “from code commits

to deployment”
● Logs for debugging
● Trigger build on-demand

A developer’s experience
Kubernetes

Deployments Pods

Phabricator

Commit 302843b67757

Diff D471737

Developers

New feature & fixes

Build Pipeline
(eg. Jenkins)

Images artifacts

Android
strings.xml

IOS strings.xml

Webapp messages.pot

Java strings.xmlmsg.properties

Hermez

Deploy diffs Workloads

CD pipelines Workloads

Deploy Operators

Deploy commits Workloads

Service URL myservice.pinterest.com

Developers

Service URL d471737.pinterest.com

Our path to a new CD system

MVP

Minimal set of
features

Hackathon

Gather feedback

Design

User story

UI mockup

Feedback sessions
with teams

Dogfood

Use Hermez to deploy
Hermez

Find early adopters

Iterate and learn

3

Production

Break into smaller
scopes

Onboard new
services

Migrate existing
services

2 41

 Hermez { Adoption, Migration }
 Tl;dr: We are helping Pinterest engineering teams to deploy and
 migrate their services onto Kubernetes using the new CD system.

Customer adoption is not easy

“If you build it, they will come”
Said no successful product owner ever.

What can Hermez do for me?

And why should I care?

Demo time for Service!
Insert video link here

Service demo

Call outs

1. Deploy PRs with easily shareable URLs #feature

2. Easy integration with existing systems #minimal-config
build systems, artifact stores and docker registry

3. Debuggability #dev-experience
container logs, pod status, workload metrics

Demo time for Cronjob!
Insert video link here

Cronjob demo
Context - No single, recommended path for deploying
cronjobs at Pinterest

Call outs

1. First class support for cronjob operation #feature
view cronjob schedule, execution history, next scheduled run in the UI

2. Easy integration with existing systems #minimal-config
build systems, artifact stores and docker registry

3. Debuggability #dev-experience
container logs, pod status, workload metrics

How we prepared Hermez for adoption
1. Reduced scope

Limited workload types (PinterestService, PinterestCronjob)

2. Partner with early adopters
(SRE, Ads, Tools)

3. Evaluate feedback, iterate & improve

4. Knowledge sharing - onboard runbook, status updates, demos,
brownbags

5. Self-service migration tools

Homefeed + Hermez - a fairytale migration story

Hermez { Learning }

Tl;dr: We want to share our experience and collaborate with the
community.

