
Design Decisions for
Communication Systems
Eric Anderson – Google; gRPC

Into the Rabbit Hole
We’re going on an adventure!

Programming Languages

Engineers familiar with multiple programming languages

Engineers opinionated about programming languages

Programming Languages

Are you interested in a language that is:
● Imperative
● Strongly-typed
● Dynamically-type-checked
● Object-oriented
● Garbage-collected
● JITed
● Memory-safe
● Multi-threaded

Programming Languages

Are you interested in a language that is:
● Imperative
● Strongly-typed
● Dynamically-type-checked
● Object-oriented
● Garbage-collected
● JITed
● Memory-safe
● Multi-threaded

● With lambdas

Communication Systems

Engineers opinionated about communication systems

Communication Systems

Engineers opinionated about communication systems…

in similar way as emacs vs vim

Why the few options?

Communication Systems

What are the choices for how to communicate?

Let’s see…
● REST
● RPC
● Proprietary protocol
● ???

Communication Systems

What are the choices for how to communicate?

Let’s see…
● Request/response vs… ???
● Client-server vs… ???
● Binary vs text

Communication Systems

What are the choices for how to communicate?

Let’s see…
● Request/response vs… ???
● Client-server vs… ???
● Binary vs text

Is that really all there is?

Starting simple

Pipe

Ya know, that Unix thing
You can send and receive

Pipe

Simplex
Reliable
Ordered
Byte-oriented
Streaming

Asynchronous
Flow controlled
Buffered
Anonymous
Serial

Simplex (vs duplex)
● Only one direction
● Except it is duplex (both directions) in some OSes
Reliable (vs unreliable)
Ordered (vs unordered)
Byte-oriented (vs message-oriented)
Streaming
● Any number of elements (bytes), with an end

(tends to imply reliable and ordered)
Asynchronous (vs synchronous)
● Sender does not wait for reader

Pipe

Pipe

Flow controlled
● Reader limits send rate
Buffered (vs unbuffered)
● Provides performance. Related to async
Anonymous (vs named)
● There is no way to “find” a pipe; you must be given

the pipe fd to use it
Serial (vs parallel)
● Only one sender and receiver at a time for multi-byte
● Is partially parallel for single-byte

Pipe

Frequently two are paired together

Duplex
● Two-direction
Full duplex (vs half duplex)
● Both sides can send at any time
Point-to-point (in practice)

Proven tool, even though slightly low-level and local-only

FIFO (named pipe)

Named (vs anonymous)
● Is a file that can be opened

The pipe is still “one time use.” After it is closed, the file
is useless and just be deleted

Shared Resources

Implicit communication via
● Shared memory
● Shared memory+mutex
● File
● File+file locks
● RDMA

Shared Resources

● Common for desktop applications
● Common for intra-app communication
● High performance

● Brittle, but adding restrictions makes manageable
○ Poorly suited for crossing trust domains
○ Poorly suited to outgrow a single specific job

Common patterns, but will be application-specific
protocol

Shared Resources

Bit too complex and varied to get into

When scaling over many machines, can still share
resources via a network protocol
● Many interaction patterns still hold

● Duplex stream of bytes or messages
● Point-to-point
● Client-server

○ The server binds to a port or name that the client knows to
connect to

● Connection-oriented

Unix Domain Socket (bytes or messages)
TCP (bytes)

Messages may have a maximum size

Sockets

Sockets

UDP (messages)
● Except it isn’t ordered
● Except it doesn’t guarantee delivery
● Except it doesn’t have flow control
● Except it isn’t connection-oriented
● Except it can multicast to multiple receivers
● Yeah… let’s stop talking about UDP

Unix Domain Socket

Allows transferring system objects (e.g., FDs)
● Commonly used to limit permissions

Unix Domain Socket

Allows transferring system objects (e.g., FDs)
● Commonly used to limit permissions

How are system objects’ lifetime managed?

Commonly reference-counted by the kernel
● FDs don’t hold open other FDs, so “flat” reference

counting system; no graph, no cycles

Higher-level protocols

RPC

Remote Procedure Call
SunRPC; json-rpc; SOAP; gRPC

● Request/response messages
● Point-to-point
● Client-server
● Connectionless
● IDL: Interface Definition Language
● Generated Code
● Synchronous

RPC

Remote Procedure Call
SunRPC; json-rpc; SOAP; gRPC

● Request/response and streaming messages
● Point-to-point
● Client-server
● Connectionless
● IDL: Interface Definition Language
● Generated Code
● Synchronous (req/resp) and async (streaming)

RPC

Remote Procedure Call
SunRPC; json-rpc; SOAP; gRPC

Streaming allows pipelining
● Something between serial and parallel

RPC?

service Creator {

 rpc Create(Empty) returns (CreateResponse);

}

message CreateResponse {

 Calculator calc = 1;

}

service Calculator {

 rpc Add(AddRequest) returns (AddResponse);

}

RMI

Remote Method Invocation. “Object-oriented RPC”

Object
● State with associated methods
● Passed by reference

Message
● Just data. Primitives and structs
● Passed by value

Need a way to “bootstrap”
● Directory service where objects “bind” to names
● Returned objects need be casted

Need a way to define methods
● Have “services” that are interfaces
● Runtime type system to query interfaces of objects

Need a way to manage object lifetime
● Need reference counting/GC

Implications of References

D-Bus example

bus = dbus.SystemBus()

avahi_proxy = bus.get_object(

 "org.freedesktop.Avahi", "/")

server = dbus.Interface(

 avahi_proxy,

 "org.freedesktop.Avahi.Server")

Actual communication

browser = server.ServiceBrowserNew(...)

Need a way to “bootstrap”
● Directory service where objects “bind” to names
● Returned objects need be casted

Need a way to define methods
● Have “services” that are interfaces
● Runtime type system to query interfaces of objects

Need a way to manage object lifetime
● Need reference counting/GC

Implications of References

Need a way to “bootstrap”
● Directory service where objects “bind” to names
● Returned objects need be casted

Need a way to define methods
● Have “services” that are interfaces
● Runtime type system to query interfaces of objects

Need a way to manage object lifetime
● Need reference counting/GC

Implications of References

RMI

● Request/response objects and messages
● Point-to-point
● Not plain client-server
● Connectionless
● IDL: Interface Definition Language
● Generated Code
● Synchronous

And sometimes:
● Network transparency

RMI

● Android Binder
● D-Bus

● DCOM
● CORBA
● Java RMI

Local RMI allows transferring system objects (e.g., FDs)
● The reference itself is a “secret”
● Commonly used to limit permissions

Small Detour

Brokered

Uses an intermediary, the “broker”; is a service

● Message/job queue
● Message bus
● Watcher/notification

Not client/server; is its own topology
● But is generally built on a client/server protocol
● D-Bus is built on Unix Domain Sockets
● Google Pub/Sub is built on gRPC

Brokered

Uses an intermediary, the “broker”; is a service

● Message/job queue
● Message bus
● Watcher/notification

Well suited for one-way communication
Well suited for “multicast”
Performance strongly dependent on use case and the
broker implementation

</Detour>

HTTP/REST

● Loosely object-oriented
○ Resource URIs are references (“http://host/ref”)
○ Methods (GET, PUT, DELETE) are applied to resources
○ References can be passed in and returned
○ References sometimes used for security; but often not

● Very few methods
○ Additional resources, content-type, and request contents

used to define more specific interfaces
● Sometimes uses IDL
● No reference counting/GC

○ Transient objects rare

http://host/ref

REST

K8s uses REST
Actually has a GC
● Resources are a bit different from objects

https://kubernetes.io/docs/concepts/workloads/controllers/garbage-collection/

HTTP/REST

● Byte-based streaming available
○ Half-duplex
○ Client-streaming commonly unavailable

● Pipelining abandoned

● Virtual hosting
● L7 routing

● Caching
○ Proxies commonly used. Generally unsupported in client

libraries

HTTP/REST vs RPC

REST “OO” is mainly in the application. Exceptions:
● L7 routing

○ Routing is typically limited to the resource structure
○ Could route based on other information in headers

● Caching, only applies to GET
○ Could use RPC request as key

Interesting they aren’t more different

Non-functional

Implementation quality
Ease of use
IDL maintainability
Ecosystem compatibility
Ecosystem size
Debuggability
Performance
Efficiency
…

Q&A

GitHub/Gitter: @ejona86
Email: ejona@google.com (please CC mailing list)
Mailing List: grpc-io@googlegroups.com
Stack Overflow: #grpc #grpc-java

Wednesday 12:25pm
Meet the gRPC Maintainers at the
Google Cloud Community Lounge

https://inthecloud.withgoogle.com/kubecon-northam-19/booth-lounge.html

Request/Response vs… ???

● One-way (fire-and-forget)
● Message queue
● Message bus
● Watcher/notification
● Streaming
● Shared memory
● RDMA

Client-server vs… ???

This strongly influences the system’s topology

● Peering
● Message queue
● Bus
● Pipeline

