Linkerd: Why!?

T LINKERD

Oliver
Gould

Linkerd lead; Buoyant CTO

YW @olix0r
) @olixor

s @olix0r

Why does Linkerd exist?

Twitter Observability (2010-2013)

e Store a timeseries of system metrics for every host;
e ... and app metrics for every service;

e ... and provide alerting;

e ... and customizable dashboards;

e ... and distributed tracing looks pretty cool;

e ... and be more reliable than other services;

e ... and scale with the company!

Twitter Observability

i | i
5

H B

Ad Hoc Queries

https://blog.twitter.com/engineering/en_us/a/2013/observability-at-twitter.html

https://blog.twitter.com/engineering/en_us/a/2013/observability-at-twitter.html

Twitter Observability Lessons

e \Would have been nice to have Prometheus + Grafana
e Configuration is the root of all evil

e Operational data model is critical

e Qver time, technical/scaling challenges are more

tractable than organizational ones

Twitter Traffic (2013-2015)

e Aurorat+ZooKeeper service discovery infra;

e Flexible request routing

o Canary
o Blue/green
o Regional Failover

Twitter Traffic

web

timelines

followers

notifications

I

database

cache

queue

Twitter Traffic Lessons

e Microservices are all about communication
e Diagnostics, diagnostics, diagnostics

e Uniform instrumentation is essential to overcoming organizational inertia

Linkerd 1.x (2015-2020)

e Built on Twitter Finagle (JVM)
e Highly configurable/pluggable

o ZooKeeper
o Consul
o Kubernetes, ...

e Flexible request routing
o Canary

o Blue/green
o Regional Failover

Linkerd 1.x

Service A Service B Service C
application RPC .
w— proxied RPC namerd :H;::i ________________ pluggable

routing policy b data store

Linkerd 1.x Lessons

e Configuration is the root of all evil
e The JVM is also the root of at least some evil
e The Future is Microservices

e Kubernetes is King

Linkerd 2.x (2017-)

Kubernetes Native Service Mesh

Out-of-the-box traffic observability

Out-of-the-box mTLS identity

Out-of-the-box latency-based load balancing

Go control plane (client-go, for better or for worse)
Rust data plane (safe, small, fast sidecar)

Prometheus + Grafana

Linkerd 2.x

controller

CLI e prometheus
L] tap proxy-injector

]

sp-validator

public-api

destination
grafana

web

identity \
Control Plane
Data Plane y\

AN N T /

\/

> linkerd-proxy

v i

application

Linkerd 2.x Lessons*

e Kubernetes is The Database!
o Pods and ServiceAccounts are the atomic building blocks.

e Infrastructure projects succeed by building trust over time.

e The world needs more reference architectures.

Why another proxy?

Proxy Goals

e Small (memory)

e Fast (low latency)

e Cheap (low CPU)

e Safe (no heartbleed)

e Malleable

Proxy Requirements

e No Garbage Collection
e Native Language

e Strong Type System

Proxy sidecar specialization

e No configuration®
o Transparent protocol detection
e Automatic, transparent mTLS within mesh
e Automatic, transparent HTTP/2 multiplexing within mesh
e Rich prometheus labeling, raw histograms, ...

e linkerd tap
o ...7?

Let endpoint_stack = client_stack
.serves ::<Endpoint>()
.push(http:: strip_header::response:: layer(L5D_REMOTE_IP))
.push(Chttp:: strip_header::response:: layer(L5D_SERVER_ID))
.push(http:: strip_header::request::layer(L5D_REQUIRE_ID))

.push(orig_proto_upgrade:: layer())
.push(tap_layer.clone())
.push(http::metrics::layer::<_, classify::Response>(
metrics.http_endpoint,
J))
.push(require_identity_on_endpoint :: layer())
.push(trace:: layer(|endpoint: &Endpoint| {
info_span!("endpoint", peer.addr = %endpoint.addr, peer.id = ?endpoint.identity)
1)

.serves ::<Endpoint>();

Cured3 Security Audit

The general indicators of security found on the Linkerd project during this June 2019
assessment are all very good. Cure53 needs to mention the atypically excellent code
readability, careful choice of implementation languages, as well as the clearly written
and well-maintained documentation for all attributes. These aspects contribute to the
body of evidence about the overall exceptional quality of the project in terms of security.

Big Bets for 2020

1. Mandatory TLS by default
2. Inter-cluster identity, policy

3. Reduce total LOC by >10%

The Service Mesh Interface

What SMI covers

Service Mesh Interface is a specification that covers the most common
service mesh capabilities:

o Traffic policy - apply policies like identity and transport encryption across
services

o Traffic telemetry - capture key metrics like error rate and latency between
services

e Traffic management - shift traffic between different services

Ql LINKERD Shipped since Kubecon EU:

= 2.4 Traffic splitting and SMI support
= 2.5:Helm charts, security audit
— 2.6: Distributed tracing

Open source CNCF service mesh

& 36+ months in production =
& 3,500+ Sla.ck channel members U e
& 10,000+ GitHub stars
¥ 100+ contributors @ 2.7 (2019): mTLS for all TCP traffic
& Weekly edge releases & 2.8+ (2020): Mandatory mTLS, better
¥ 6-8 week stable releases multi-cluster, policy, mesh expansion, ...
/@/ Open governance commitment
Linkerd talks this week from:
<L) CLOUD NATIVE @® Nordstrom Paybase

COMPUTING) ©
k==l FOUNDATION @ \/icrosoft *w® Buoyant

7 LINKERD

Join our community!

) github.com/linkerd &% slack.linkerd.io ¥ @linkerd

