
Abdullah Gharaibeh, Google

Deep Dive: Sig Scheduling



Introduction
Scheduler assigns Pods to Nodes

Node 1 Node 2 Node n

...

Node 3 Node 4

Scheduler



Introduction
Filters identify feasible Nodes

Node 1 Node 2 Node n

...

Node 3 Node 4

Scheduler



Introduction
Score functions rank feasible Nodes

Node 1 Node 2 Node n

...

Node 3 Node 4

50 90 20

Scheduler



Recent Developments



Scheduling Framework
● Plugins add scheduling behaviors, they can be invoked at multiple extension points.
● ComponentConfig allows plugins to be enabled, disabled, and reordered.



Scheduling Framework

● Makes the k8s scheduler easier to extend and isolate features

○ A plugin corresponds to a feature and it can implement several extension points. In 
the past, a feature would be spread across different files

○ The core scheduler becomes simpler: run callbacks at pre-defined extension points 
in each execution cycle

● Custom schedulers don’t have to maintain patches to support custom 
algorithms

● Previously we had only “predicates” and “priorities”. New extension 
points allow implementing more complex features, for example 
gang-scheduling



Scheduling Framework
go/scheduling-framework-migration

● Milestone 1 (Done): 1.17
○ Wrapped existing predicate and priorities functions in Plugins.
○ Translation layer from predicate/priority “policies” into Plugin configurations.
○ Create an interface for CA/Daemonset/Kubelet to call Filter plugins.

● Milestone 2 (Not started): 1.18
○ Move predicates and priorities code to run natively as plugins. 
○ Clean up calls from core scheduler to predicates and priorities.
○ Declare Policy API deprecated, Plugins API in ComponentConfig is the replacement

● Milestone 3 (high-level idea): 1.19 
○ Actually Deprecate Policy API and remove translation layer
○ Framework in GA

https://goto.google.com/scheduling-framework-migration


Pod Topology Spreading

● A Pod-level API that allows spreading pods in arbitrary topology domains
● Can be hard or soft requirement
● Alpha in 1.17

Node 1 Node 2

Node 3 Node 4

Node 5 Node 6

Zone 1

Zone 2



Improved Observability

● Latency
○ Scheduling latency per pod
○ Latency breakdown of each scheduling step/plugin

● Traffic
○ Incoming pods per second
○ Scheduling attempts per second

● Saturation
○ Binding goroutines
○ Cache size (pods and nodes in scheduler cache)



Graduated to GA in 1.17

● Schedule DaemonSet Pods
● Taint Nodes by Condition



Planned Features



Pod Overhead

● Problem
○ Pods have non-negligible resource overhead not accurately accounted for
○ The current approach reserves pre-defined amount of resources on the node for system 

components, but ignores per-pod overhead (like pause container)
○ With sandbox pods, the pod overhead potentially becomes much larger and can’t be ignored (e.g., 

Kata agent, gVisor sentry)

● Solution
○ Augment the RuntimeClass definition and the PodSpec to introduce the field Overhead 

*ResourceList
○ Scheduler, Kubelet and resource quota management takes this overhead into account



In-place Update of Pod Resources

● Problem
○ Currently, changing resource allocation requires the Pod to be recreated since the PodSpec's 

Container Resources is immutable
○ This is disruptive when trying to vertically scale the Pod, especially for stateful workloads, or 

ones with lower replica count

● Solution
○ Make PodSpec mutable with regards to Resources
○ Practically, Kubelet will decide whether or not the change is accepted
○ If accepted, the Scheduler also accounts for the increased in resource usage of the node



Questions


