wr

X

KubeCon CloudNativeCon
North America 2019

Deep Dive: Sig Scheduling
Abdullah Gharaibeh, Google

-
Y

Introduction L wt) m.c,

North America 2019

Scheduler assigns Pods to Nodes
/| . O N

__ Scheduler
I J [I

|
Node 1 Node 2 Node 3 Node 4 Node n
N [N [N [oy)

(o} 0. O
00 O (o
(o . | (O

O
oy) oy) oy) oy) ()

Introduction L wt) EL,

North America 2019

Filters identify feasible Nodes
|)

\\»Schedubr

v v
Node 1 Node 2

~

@

Introduction L wt) EL,

North America 2019

Score functions rank feasible Nodes
4) N
O

K Scheduler

v
Node 1

/

T J
Node 3 Node 4
))

¢
N

Ly

Recent Developments b= A

rrrrrrrrrrrrrrrr

Scheduling Framework - A

North America 2019

e Plugins add scheduling behaviors, they can be invoked at multiple extension points.
e ComponentConfig allows plugins to be enabled, disabled, and reordered.

Pod Scheduling Context
a N A

Pick a Pod from Reserve a
scheduling Node for the
queue Pod in Cache

—

Bind Pod to
Node

Sort

Pre-filter
Filter
Post-filter
Scoring
Normalize

\ Scheduling Cycle j \ Binding Cycle /

Scheduling Framework h-ANL= I

North America 2019

e Makes the k8s scheduler easier to extend and isolate features

o A plugin corresponds to a feature and it can implement several extension points. In
the past, a feature would be spread across different files

o The core scheduler becomes simpler: run callbacks at pre-defined extension points
in each execution cycle

e Custom schedulers don’t have to maintain patches to support custom
algorithms

e Previously we had only “predicates™ and “priorities”. New extension
points allow implementing more complex features, for example
gang-scheduling

Scheduling Framework h-ANL= I

North America 2019

go/scheduling-framework-migration

e Milestone 1 (Done): 1.17

o Wrapped existing predicate and priorities functions in Plugins.
o Translation layer from predicate/priority “policies” into Plugin configurations.
o Create an interface for CA/Daemonset/Kubelet to call Filter plugins.

e Milestone 2 (): 1.18

o Move predicates and priorities code to run natively as plugins.
o Clean up calls from core scheduler to predicates and priorities.
o Declare Policy API deprecated, Plugins APl in ComponentConfig is the replacement

e Milestone 3 (high-level idea): 1.19

o Actually Deprecate Policy APl and remove translation layer
o Framework in GA

https://goto.google.com/scheduling-framework-migration

: 8 B
Pod Topology Spreading conton | R

North America 2019

e A Pod-level API that allows spreading pods in arbitrary topology domains
e (Can be hard or soft requirement
e Alphain1.17

Zone 2
Node 3 Node 4
Zone 1
Node 1 Node 2

(> (>) Node 5 Node 6
{03 {03
(o

Improved Observability h- A~

North America 2019

e Latency

o Scheduling latency per pod
o Latency breakdown of each scheduling step/plugin

e Traffic
o Incoming pods per second
o Scheduling attempts per second

e Saturation
o Binding goroutines
o Cache size (pods and nodes in scheduler cache)

Graduated to GA in 1.17 e 8

North America 2019

e Schedule DaemonSet Pods
e Taint Nodes by Condition

Planned Features Lot m

rrrrrrrrrrrrrrrr

Pod Overhead L t! E

North America 2019

e Problem
o Pods have non-negligible resource overhead not accurately accounted for

o The current approach reserves pre-defined amount of resources on the node for system
components, but ignores per-pod overhead (like pause container)

o With sandbox pods, the pod overhead potentially becomes much larger and can’t be ignored (e.g.,
Kata agent, gVisor sentry)

e Solution
o Augment the RuntimeClass definition and the PodSpec to introduce the field Overhead

*Resourcelist
o Scheduler, Kubelet and resource quota management takes this overhead into account

£2

In-place Update of Pod Resources .. B

North America 2019

e Problem
o Currently, changing resource allocation requires the Pod to be recreated since the PodSpec's
Container Resources is immutable
o This is disruptive when trying to vertically scale the Pod, especially for stateful workloads, or
ones with lower replica count

e Solution
o Make PodSpec mutable with regards to Resources
o Practically, Kubelet will decide whether or not the change is accepted
o If accepted, the Scheduler also accounts for the increased in resource usage of the node

