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Scheduler assigns Pods to Nodes
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Filters identify feasible Nodes
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Score functions rank feasible Nodes
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e Plugins add scheduling behaviors, they can be invoked at multiple extension points.
e ComponentConfig allows plugins to be enabled, disabled, and reordered.
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e Makes the k8s scheduler easier to extend and isolate features

o A plugin corresponds to a feature and it can implement several extension points. In
the past, a feature would be spread across different files

o The core scheduler becomes simpler: run callbacks at pre-defined extension points
in each execution cycle

e Custom schedulers don’t have to maintain patches to support custom
algorithms

e Previously we had only “predicates™ and “priorities”. New extension
points allow implementing more complex features, for example
gang-scheduling
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go/scheduling-framework-migration

e Milestone 1 (Done): 1.17

o  Wrapped existing predicate and priorities functions in Plugins.
o Translation layer from predicate/priority “policies” into Plugin configurations.
o Create an interface for CA/Daemonset/Kubelet to call Filter plugins.

e Milestone 2 ( ): 1.18

o Move predicates and priorities code to run natively as plugins.
o Clean up calls from core scheduler to predicates and priorities.
o Declare Policy API deprecated, Plugins APl in ComponentConfig is the replacement

e Milestone 3 (high-level idea): 1.19

o Actually Deprecate Policy APl and remove translation layer
o Framework in GA



https://goto.google.com/scheduling-framework-migration
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e A Pod-level API that allows spreading pods in arbitrary topology domains
e (Can be hard or soft requirement
e Alphain1.17
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e Latency

o Scheduling latency per pod
o Latency breakdown of each scheduling step/plugin

e Traffic
o Incoming pods per second
o  Scheduling attempts per second

e Saturation
o Binding goroutines
o Cache size (pods and nodes in scheduler cache)




Graduated to GA in 1.17 e 8
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e Schedule DaemonSet Pods
e Taint Nodes by Condition
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e Problem
o Pods have non-negligible resource overhead not accurately accounted for

o The current approach reserves pre-defined amount of resources on the node for system
components, but ignores per-pod overhead (like pause container)

o  With sandbox pods, the pod overhead potentially becomes much larger and can’t be ignored (e.g.,
Kata agent, gVisor sentry)

e Solution
o  Augment the RuntimeClass definition and the PodSpec to introduce the field Overhead

*Resourcelist
o Scheduler, Kubelet and resource quota management takes this overhead into account
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e Problem
o  Currently, changing resource allocation requires the Pod to be recreated since the PodSpec's
Container Resources is immutable
o This is disruptive when trying to vertically scale the Pod, especially for stateful workloads, or
ones with lower replica count

e Solution
o Make PodSpec mutable with regards to Resources
o Practically, Kubelet will decide whether or not the change is accepted
o If accepted, the Scheduler also accounts for the increased in resource usage of the node







