

Antoine Pelisse (Google), Stefan Schimanski (Red Hat)

Sig-API-Machinery Deep Dive

Agenda

• CRDs
• Immutability
• Equality
• x-kubernetes-list-type / x-kubernetes-map-type

• Server-Side Apply
• Priority & Fairness

WIP: Immutability
type: object
properties:
 slice:
 type: array
 x-kubernetes-mutability: Immutable
 items:
 type: string

type: object
properties:
 slice:
 type: array
 items:
 type: string
 x-kubernetes-mutability: Immutable
 nullable: true

{“slice”: [“a”,”b”]} → {“slice”: [“a”,”b”]} ✓
{“slice”: [“a”,”b”]} → {“slice”: [“b”,”a”]} 𐄂
{“slice”: []} → {“slice”: null} ?
{“slice”: []} → {} ?

{“slice”: [“a”,”b”]} → {“slice”: [“a”,”b”]} ✓
{“slice”: [“a”,”b”]} → {“slice”: [“b”,”a”]} 𐄂
{“slice”: [“a”,”b”]} → {“slice”: [”a”]} ✓ ?
{“slice”: [“a”]} → {“slice”: [”a”,”b”]} ✓ ?
{“slice”: []} → {“slice”: null} ✓ ?
{“slice”: []} → {} ✓ ?
{“slice”: [“”]} → {“slice”: [null]} 𐄂

Defaulting

Assume: {“slice”: []} → {} ✓

Is this a good behaviour?

type: object
properties:
 slice:
 type: array
 x-kubernetes-mutability: Immutable
 items:
 type: string

Defaulting

Assume: {“slice”: []} → {} ✓

Is this a good behaviour?

{“slice”: []} → {} → {“slice”:[“a”]} ✓?

type: object
properties:
 slice:
 type: array
 x-kubernetes-mutability: Immutable
 items:
 type: string
 default: [“a”]

defaulting is strict.

defaulting

Validation

Assume: {“slice”: []} → {} ✓

Is this a good behaviour?

valid → invalid

type: object
properties:
 slice:
 type: array
 x-kubernetes-mutability: Immutable
 items:
 type: string
required: [“slice”]

validation is strict.

Equality

When are objects equal?

Rule: if object A == object B, then request on A == request on B.
 in etcd in etcd
 in request in response

Corollary:

With defaulting and validation being strict, equality must
be strict (reflect.DeepEqual)

JSON

Equality

When are objects equal? reflect.DeepEqual

Is this what we want? Was this an accident?

Native types:
type Foo struct {
 Slice []string `json:”slice,omitempty”`
}

json.Unmarshal(`{“slice”: []`, &Foo{}} → Foo{Slice: nil}

JSON

Native types (often) normalize, CRDs never do.

Protobuf

When are objects equal?

type Foo struct {
 Slice []string `protobuf:"bytes,2,rep,name=slice"`
}

[] → nil (even without omitempty)

null → nil

Protobuf

Protobuf normalizes even more.

Equality

When are objects equal? reflect.DeepEqual

Is this what we want? Was this an accident?

Native types:
type Foo struct {
 Slice []string `json:”slice,omitempty”`
}

json.Unmarshal(`{“slice”: []`, &Foo{}} → Foo{Slice: nil}

JSON

Native types (often) normalize, CRDs never do. Should they?

apiextensions-apiserver

404

etcd

CR handlers
CR handlers

CR handlers

re
q

u
es

t
co

n
ve

rs
io

n
 &

d

ef
au

lt
in

g
storage

conversion &
defaulting

REST logic

re
su

lt
co

n
ve

rs
io

n

va
lid

at
io

n

admission

d
ec

o
d

in
g

encoding

GET
CREATE
LIST
UPDATE
DELETE
WATCH
PATCH

decoding / encoding

HTTP request

HTTP response

Request normalization

logic that is strict today

apiextensions-apiserver

404

etcd

CR handlers
CR handlers

CR handlers

re
q

u
es

t
co

n
ve

rs
io

n
 &

d

ef
au

lt
in

g
storage

conversion &
defaulting

REST logic

re
su

lt
co

n
ve

rs
io

n

va
lid

at
io

n

admission

d
ec

o
d

in
g

encoding

GET
CREATE
LIST
UPDATE
DELETE
WATCH
PATCH

decoding / encoding

HTTP request

HTTP response

Request normalization

logic that is strict today
normalization

apiextensions-apiserver

404

etcd

CR handlers
CR handlers

CR handlers

re
q

u
es

t
co

n
ve

rs
io

n
 &

d

ef
au

lt
in

g
storage

conversion &
defaulting

REST logic

re
su

lt
co

n
ve

rs
io

n

va
lid

at
io

n

admission

d
ec

o
d

in
g

encoding

GET
CREATE
LIST
UPDATE
DELETE
WATCH
PATCH

decoding / encoding

HTTP request

HTTP response

Request normalization

logic that is strict today
normalization

List-type / map-type

• native types: strategic merge patch defines merge strategy.
• CRDs never supported SMP. CRDs support server-side-apply.

New CRD OpenAPI extensions (since 1.16):

• x-kubernetes-list-type: atomic | set | map

x-kubernetes-list-map-keys: [“name”]

• x-kubernetes-map-type: atomic | granular

default

default

Only with
structural schemas.

Lists

• x-kubernetes-list-type: atomic | set | map

x-kubernetes-list-map-keys: [“name”]

{“array”: [
{“name”:”a”, “value”:42},
{“name”:”b”, “value”:1}

]}

{“array”: [
{“a”:”x”, “b”:42},
{“a”:”y”, “b”:1},
{“a”:”y”, “c”:[1,2,3]}

]}

map

set

default

keys fields must be scalar or atomic

unique keys

unique items

Maps

x-kubernetes-map-type: atomic | granular

{“map”:{“a”:”x”}} + {“map”:{“b”:42}} → {“map”:{“a”:”x”, “b”:42}}

{“map”:{“a”:”x”}} + {“map”:{“b”:42}} → {“map”:{“b”:42}}
atomic

default

granular

Server-side Apply: Declarative

Kubernetes is about declarative “configurations”

Resources specify intent, and allow different actors to have different
opinions.

`kubectl apply` allows declarative intents:
- No multiple actors
- No intent for controllers!

Client-side Apply: Limitations

Client-side apply uses “Strategic-Merge Patch”:
- Tedious update to protocol
- Requires coordinated client and server changes

Only has implementation in Go, or shell-out `kubectl`

It doesn’t support:
- multi-keys associative lists
- unions
- multiple appliers
- multiple versions
- so many other bugs ...

Server-side Apply: Overview

From very far away:

- Server-side Apply tracks which actors manage which fields for all
operations

- Clients “apply” their intent, and only their intent

- Their intent is merged on the server

Field Management

Server-side apply manages everyone’s intent.

Two ways to determine intent:
- Apply: Actor has an opinion about each fields specified in the

configuration they send.

- Update: The intent is computed from the fields that have changed.

Apply and Update workflows

“Update” is triggered by the well-known existing flow:
- POST
- PUT
- PATCH (SMP, JSonPatch, JSon Merge patch)

“Apply” is triggered by sending a Yaml PATCH:
$ cat <<EOF | curl -XPATCH -d @- -H “Content-Type: application/apply-patch+yaml” \

 server/apis/apps/v1/namespaces/default/deployments/nginx

apiVersion: apps/v1

kind: Deployment

metadata:

 name: nginx

...

Fields Sets

- Set is a trie of fields owned:
"f:metadata":{"f:labels":{"f:sidecar_version": {}}},

"f:spec":{"f:template":{"f:spec":{"f:containers":{

 "k:{\"name\":\"sidecar\"}":{".": {},"f:image": {}}

}}}}

- One fields set per manager and per version
- Fields can be owned by multiple managers if they set the same

value
- Changing value either takes over the ownership, or causes a

conflict

Conflicts

- Update always grabs the ownership when a value is changed: all
other managers lose that field.

- Apply has more cases:
- If the value is the same, the ownership is shared (field is present in

multiple sets)
- If the value is different, a conflict is returned (e.g. “spec.replicas is

managed by hpa”)
- Conflicts can be forced, with the force query parameter to the request.

Merging

Merging is “simple”: Add all applied change on top of existing object

Fields that are not applied are left unchanged

We then remove list or map items that were formerly owned by that
manager, and not owned by any other applyer.

What’s missing?

There are a few things that we need to improve:
- Performance: tracking all fields of all objects takes time.
- Field set size: we’d love to find a more compact format for the

field set
- Unions: SSA creates a single path for all resources, CRD

included, so we can implement unions there.
- Ability to “declaratively remove” fields or list/map items.
- Tracking changes from mutating webhooks (but, performance …)

API Priority and Fairness

• Aaron Prindle, Google
• Bruce Ma, Ant Financial
• Daniel Smith, Google
• Mike Spreitzer, IBM
• Min Jin, Ant Financial
• Tony He, Ant Financial

API Priority and Fairness

• Goals:
• Reserve capacity for self-maintenance
• Protection against buggy controllers
• Protection against buggy/greedy parts of workload

• What to regulate:
• The product of dispatch rate X execution duration
• … that is, the number executing

• Approach:
• Divide server’s capacity among priority levels
• Concurrency limit and optionally queuing at each priority level
• Classify request to flow, associate flow to priority level

• This is a more sophisticated version of the max-in-flight limit

429

API Priority and Fairness
Earlier
handlers

Later
handlers

API
Priority
and
Fairness

Flow Schema 1 Priority Level 1

Priority Level N

Dispatch

Dispatch

Flow Schema 2

Flow Schema N

Flow Schema N-1

API Priority and Fairness

• Example
PriorityLevelConfiguration:
kind: PriorityLevelConfiguration

spec:

 type: Limited

 limited:

 assuredConcurrencyShares: 30

 limitResponse:

 type: Queue

 queuing:

 queues: 50

 handSize: 3

 queueLengthLimit: 10

• PriorityLevelConfiguration
with no queuing:
kind: PriorityLevelConfiguration

spec:

 type: Limited

 limited:

 assuredConcurrencyShares: 30

 limitResponse:

 type: Reject

• PriorityLevelConfiguration
with no concurrency limit:
kind: PriorityLevelConfiguration

spec:

 type: Exempt

API Priority and Fairness
• Example FlowSchema:

kind: FlowSchema
spec:
 priorityLevelConfiguration: {name: system-high}
 matchingPrecedence: 1500
 distinguisherMethod: {type: ByUser}
 rules:
 - subjects:
 - kind: Group
 - group: {name: "system:nodes"}
 - resourceRules:
 - verbs: [get, list]
 apiGroups: [""]
 resources: [pods, services, nodes/status]
 namespaces: ["*"]
 - nonResourceRules:
 - verbs: [get, list]
 nonResourceURLs: ["*"]

API Priority and Fairness
• Match request from system service account to read anything:

kind: FlowSchema

spec:

 priorityLevelConfiguration: {name: system-high}

 matchingPrecedence: 1500

 distinguisherMethod: {type: ByNamespace}

 rules:

 - subjects:

 - kind: ServiceAcount

 - serviceAccount: {namespace: kube-system, name: "*"}

 - resourceRules:

 - verbs: [get, list]

 apiGroups: ["*"]

 resources: ["*"]

 clusterScope: true

 namespaces: ["*"]

