

W. Watson & Denver Williams,
Vulk Cooperative

Deep Dive: cncf.ci v3

Agenda:
● Quick Intro

○ cncf.ci Team, Goals, Key features
○ Dashboard Walk-through

● Deep Dive: Adding new CNCF-projects
○ How to
○ Challenges
○ Benefits
○ Code Review

● Stay Connected
● Q&A [5-10 minutes]

Meet Vulk Cooperative

Content ● Worker-owned software cooperative

● Since 2013

● Meetups in Austin, TX

○ Austin Software Co-operatives

○ Open Source Axes

● Connect with us

○ twitter.com/vulkcoop

○ twitter.com/opensourceaxes

vulk.coop

http://twitter.com/vulkcoop
https://twitter.com/opensourceaxes
http://vulk.coop

Meet the cncf.ci Team

Taylor Carpenter
 @taylor

Lucina Stricko
 @lixuna

W. Watson
 @wavell

Denver Williams
 @denverwilliams

Ashleigh Gregory*
 @ashleighgregory

William Harris*
 @williscool

Joshua Smith*
 @nupejosh

Robert Siekmann*
 @rsiekmann

https://github.com/taylor
https://github.com/lixuna
https://github.com/wavell
https://github.com/denverwilliams
https://github.com/ashleighgregory
https://github.com/williscool
https://github.com/nupejosh
https://github.com/rsiekmann

Intro

cncf.ci

http://cncf.ci

Intro

The cncf.ci project consists of a CI testing system, status repository
server and a dashboard -- cncf.ci.

The CI testing system validates the build and deployment of each CNCF
project for any commit on stable and HEAD using x86 and Arm architectures
on bare metal (Packet) servers.

The CI testing system can reuse existing artifacts from a project’s CI system
or generate new build artifacts.

The status repository server collects the test results and the dashboard
displays them.

Goals

Goals:
● To compliment the CNCF landscape and trail map -- l.cncf.io
● To promote CNCF hosted projects and help attract more projects to CNCF
● To demonstrate the use of cloud native technologies on multiple test

environments
● To support and contribute to a sustainable and scalable project ecosystem
● To get feedback from cloud native end users and projects
● To provide a third party, unbiased validation of build, deploy and e2e tests

for CNCF Graduated and Incubating projects

Displaying CNCF Projects

Displaying ONAP SO Project

Key features of cncf.ci

Key Features

1. Project-centric -- highlight and validate CNCF-hosted
Graduated and Incubating projects:

● Validate stable and HEAD releases of Graduated and Incubating projects
● Re-use build containers that are provided by a project’s CI System
● Re-use upstream Helm charts
● Re-use end-to-end tests provided by projects

Key Features

2. Collaboration -- increased engagement with CNCF
Project maintainers:

● Maintainers can update project and release details via a GitHub pull request
● Maintainers can provide Helm charts and smoke tests for the deploy phase
● Maintainers can provide end-to-end tests for the test phase
● CI Testing System will integrate with external CI systems to retrieve a CNCF

Project’s build status and container artifacts

Key Features

3. Agnostic testing -- validate projects in a configurable
and neutral test environment:

● Per Kubernetes Release
○ Stable
○ HEAD

● Per Architecture
○ X86
○ Arm

● Bare Metal
○ Packet

Dashboard
Walk-through

Walk-through: cncf.ci

cncf.ci

http://cncf.ci

Walk-through: cncf.ci

cncf.ci

http://cncf.ci

How to add a CNCF-project to cncf.ci

Deep Dive

How to Add a Project

Project Maintenance
1. Go to https://github.com/crosscloudci
2. Open the <project>-configuration repo for your

CNCF Project, ie. prometheus-configuration
3. Create a fork of the project to make updates
4. Open the cncfci.yml file on the master branch
5. Update content, as needed:

a. logo_url:
"https://raw.githubusercontent.com/cncf/art
work/master/prometheus/icon/color/promet
heus-icon-color.svg?sanitize=true" (for svg
format, append ?sanitize=true to url)

b. display_name: (e.g. Prometheus)
c. sub_title: (e.g. Monitoring)
d. stable_ref: (e.g. v2.13.0)
e. head_ref: (e.g. master)
f. project_url: (e.g..

"https://github.com/prometheus/prometheus
")

6. Submit a pull request to master branch

https://github.com/crosscloudci
https://github.com/crosscloudci/prometheus-configuration
https://raw.githubusercontent.com/cncf/artwork/master/prometheus/icon/color/prometheus-icon-color.svg?sanitize=true
https://raw.githubusercontent.com/cncf/artwork/master/prometheus/icon/color/prometheus-icon-color.svg?sanitize=true
https://raw.githubusercontent.com/cncf/artwork/master/prometheus/icon/color/prometheus-icon-color.svg?sanitize=true
https://github.com/prometheus/prometheus

CI System Configuration

● Create a ci_system element
○ The ci_system element is an array which represents a list of all of the ci_systems

(e.g. multiple Travis endpoints, a Travis and a Jenkins endpoint, etc) for a project
○ ci_system_type is the type of ci system. Use "travis-ci" for Travis
○ ci_project_url is the source control url for the project.
○ ci_project_name is the organization and project name of the project in the

ci_system (e.g. crosscloudci/testproj)
○ arch is a list of architectures that are supported. e.g. amd64, arm64

Challenges

Cross Pipeline Problem

● One organization
○ A pipeline
○ A ci/cd tool

● Is used by …
○ Another organization
○ A different pipeline
○ Which uses different CI/CD

tool

Benefits

Clear Engagement Steps

● Allows project maintainers to have more
control over the visibility of their project
○ Branding

■ Logos
■ Names
■ Subtitles

○ Release
■ Stable version
■ HEAD branch

Cross-Pipeline Architecture

● Standard way to consume
○ Build status
○ Artifacts
○ Test status

● Abstract away changes that occur in
versions of the CI/CD tool

Code Review

Retrieve Build Status

● Review .gitlab-ci.yml and make a note of the curl command that calls the external ci proxy (i.e.
https://github.com/crosscloudci/<your-project>-configuration/blob/master/.gitlab-ci.yml)

● Artifacts and test statuses will be retrieved in a similar manner in the future

https://github.com/crosscloudci/testproj-configuration/blob/master/.gitlab-ci.yml

Optional: Build a CI Proxy Plugin
https://github.com/crosscloudci/ex_ci_proxy/blob/master/README.md

What is a ci proxy plugin?

A Simple CLI tool for consuming status information from a project’s CI/CD pipeline

CI CLI API

Arguments
1. -p or --project is the project name in the format of orgname/project
2. -c or --commit is the commit reference
3. -t or --tag is the tag name

Status executable and response format
1. The output is tab delimited
2. The first line is a header
3. The second line is data
4. The status should be success, failure, or running
5. The build_url should be the url where the status was found

https://github.com/crosscloudci/ex_ci_proxy/blob/master/README.md

Optional: Build a Proxy Plugin
Why have a CI Proxy?

● One stop shop for statuses
○ Build status
○ Artifact links
○ Integration test results

Add CI Proxy plugin configuration
● Name is the name of the plugin
● Interface type of plugin
● Repo is the github location of the plugin
● Ref is the branch or tag of the plugin

Get Connected

How to Collaborate
● Add/update a CNCF project, see the Contributing Guide:

○ https://github.com/crosscloudci/crosscloudci/blob/master/CONTRIBUTING.md

● Create issues/PR on GitHub:
○ https://github.com/crosscloudci/ci-dashboard/issues

● Subscribe to the CNCF CI public mailing list:
○ https://lists.cncf.io/g/cncf-ci-public

● Join #cncf-ci on CNCF Slack:
○ https://slack.cncf.io

● Attend CI WG Public Meetings:
○ https://github.com/cncf/wg-ci
○

https://github.com/crosscloudci/crosscloudci/blob/master/CONTRIBUTING.md
https://github.com/crosscloudci/ci-dashboard/issues
https://lists.cncf.io/g/cncf-ci-public
https://slack.cncf.io/
https://github.com/cncf/wg-ci

Connect with the Team

Q&A

Thank You!

Presentation prepared by:

w.watson@vulk.coop
denver@debian.nz
lucina@vulk.coop

ashleigh@vulk.coop
taylor@vulk.coop

mailto:w.watson@vulk.coop
mailto:denver@debian.nz
mailto:lucina@vulk.coop
mailto:ashleigh@vulk.coop
mailto:taylor@vulk.coop

