


Matt Butcher and Kent Rancourt

Brigade Gateways and 
Workers



Matt Butcher
Principal dev at Microsoft. Helm, Brigade, 
CNAB, OAM, and all that. Author of a bunch 
of tech books. Big coffee snob.



Kent Rancourt

Senior engineer at Microsoft working on Brigade and 
other OSS. Passionate about CI/CD and automation in 
general. Dad, martial arts instructor, comic book nerd, 
lover of pub trivia, and I think Starbucks is fine coffee. 
Fight me.



Overview

Today we are going to cover a few ways of extending Brigade:

1. Building a custom gateway
2. Building a custom worker



Brigade Architecture

Gateway

Gateway

Gateway

Controller Worker

W
or

kf
lo

w

Job

Job

Job

Based on something 
external create an 
event.

Listen for events
Start workers

Execute a 
Brigade script

Run jobs to completion, where 
each job is a step in a 
workflow.



Brigade Architecture

Gateway

Gateway

Gateway

Controller Worker

W
or

kf
lo

w

Job

Job

Job

Customizable



Brigade.js

A workflow is typically 
written as a brigade.js 
file. And jobs are 
Docker containers. 
Thus, this part of 
Brigade is already 
highly customizable.



How to Build a Gateway

1. Write a server that watches for the external trigger (cron, webhook, 
event, etc)

2. That server must generate a Kubernetes secret as output
3. Typically, run this as a Kubernetes deployment



Gateways
A custom gateway makes it possible for you to trigger your own Brigade events 
based on whatever conditions you want.

Examples:

• Cron-based gateway runs a job based on time
• CloudEvents gateway hooks Brigade up to a CloudEvents emitter
• Trello gateway hooks up Trello’s actions to a Brigade script



Demo: A Minimal Gateway

In this demo, we’ll look at a small gateway written in Rust.

This gateway generates a new “interval” event every five minutes.



Demo: A Minimal Gateway



Demo: A Minimal Gateway



Demo: A Minimal Gateway



Part 2: Customizing the Brigade Worker



Three Approaches

1. Use brigade.json file.
Add NPM packages before brigade.js executes.

2. “Extend” the default worker image.
Add new NPM or system-level packages.

3. Create a worker image from scratch.
Do something completely different that is still Brigade-compatible.



Hello, World!

$ brig project create

• VCS or no-VCS project: no-VCS
• Project Name: hello-world
• Upload a default brigade.js script: 0-hello-world/brigade.js
• Accept defaults for everything else.

$ brig run hello-world



Hello, Random!



Hello, Random!

$ brig project create

• VCS or no-VCS project: no-VCS
• Project Name: hello-random
• Upload a default brigade.js script: 1-hello-random/brigade.js
• Accept defaults for everything else.

$ brig run hello-random --config 1-hello-random/brigade.json



Hello, Colors!

I’ve pre-built this and pushed it to krancour/brigade-worker:colors

The image referenced in FROM was 
built from the head of the master 
branch, but you can usually just 
start with 
brigadecore/brigade-
worker:v1.2.1



Hello, Colors!

$ brig project create

• VCS or no-VCS project: no-VCS
• Project Name: hello-colors
• Upload a default brigade.js script: 2-hello-colors/brigade.js
• Configure advanced options: Y

• Worker image registry or DockerHub org: krancour
• Worker image name: brigade-worker
• Custom worker image tag: colors

• Accept defaults for everything else.

$ brig run hello-colors



Now for Something
Completely Different



Starting from Scratch

Want to do something completely different with your worker?

The sky’s the limit as long as you:

• Consume worker configuration from the same sources
as the default worker:

• Environment variables
• Project secrets (Kubernetes secrets)

• For each job, name and label the corresponding pod the
same way the default worker would.



Declarative Pipelines?



Love The Drake!

The DrakeSpec is a (draft) open 
specification for declarative 
pipelines.

BrigDrake is a DrakeSpec-compliant 
pipeline executor that is also a 
Brigade-compatible worker!



Hello, Drake!

$ brig project create

• VCS or no-VCS project: no-VCS
• Project Name: hello-drake
• Upload a default brigade.js script: 3-hello-drake/Drakefile.yaml
• Configure advanced options: Y

• Worker image registry or DockerHub org: lovethedrake
• Worker image name: brigdrake-worker
• Custom worker image tag: v0.21.0
• Worker command: /brigdrake/bin/brigdrake-worker

• Accept defaults for everything else.

$ brig run hello-drake --event foobar

This is not even JavaScript!


