

John Belamaric, Google

CoreDNS: Deep Dive
Extension Points for Developers

Three ways to customize CoreDNS

● Rebuilding with external plugins

● Using CoreDNS as a library

● Building your own plugin

Rebuilding with External Plugins

● “External”
○ Not built into the standard binaries and Docker images
○ Not supported by core team

● No dynamic loading of plugins
○ Plugins are built-in at compile time
○ Controlled by plugin.cfg

● Plugin ordering is fixed at compile time

● The ones we know about: https://coredns.io/explugins

You do not need to know Go to do this!

External Plugins

1. Clone CoreDNS
2. Modify plugin.cfg
3. Build CoreDNS

Prerequisites: Docker and a shell

External Plugins

$ docker run --rm -u $(id -u):$(id -g) -v $PWD:/go golang:1.12 \
 /bin/bash -c \
 "git clone https://github.com/coredns/coredns.git && \
 cd coredns && \
 git checkout v1.6.5"

1. Clone CoreDNS

External Plugins

...
dnstap:dnstap
acl:acl
firewall:github.com/coredns/policy/plugin/firewall
...
whoami:whoami
on:github.com/mholt/caddy/onevent

2. Modify plugin.cfg
$ cd coredns
$ vi plugin.cfg

External Plugins

$ docker run --rm -v $PWD:/coredns -w /coredns golang:1.12 make

3. Build CoreDNS

CoreDNS as a Library

● Replace the CoreDNS main.go

● Allows you to:
○ Reduced the size and memory footprint of the binary
○ Limit the functionality and CLI flags
○ Do extra setup or initialization

● Used, for example, by Node Local DNS in K8s

Example: dnscached

● Source is in https://github.com/coredns/learning-coredns

● Simple caching DNS server

● Embeds only bind, cache, errors, forward and log
plugins

● CLI args to generate a Corefile internally

Writing a Plugin
● Three categories of plugins

● Best practice: stick to one of these in your plugin

● Backends
○ Source of data
○ file, forward, hosts, clouddns, template, kubernetes

● Mutators
○ Modify the inbound request, the outbound response, or both

○ acl, cache, rewrite, nsid

● Configurators
○ Modify the internal state or functioning of CoreDNS
○ bind, log, health, ready

Four functions

● Name - literally, just returns the name of the plugin

● ServeDNS - request handling

● init - register your plugin with Caddy

● setup - parse your config

Example: There can be only one!

● onlyone plugin from Learning CoreDNS
● Filters out all but one of specific record types

example.com. 18298 IN A 93.184.216.34
example.com. 18298 IN A 93.184.216.35
example.com. 18298 IN A 93.184.216.36

example.com. 18298 IN A 93.184.216.35

onlyone [ZONES...] {
 types TYPES
}

Functions: Name and init

func (o *onlyone) Name() string { return "onlyone" }

onlyone.go

func init() {
caddy.RegisterPlugin("onlyone", caddy.Plugin{

ServerType: "dns",
Action: setup,

})
}

setup.go

Function: setup

func setup(c *caddy.Controller) error {
t, err := parse(c)
if err != nil {

return plugin.Error("onlyone", err)
}

dnsserver.GetConfig(c).AddPlugin(func(next plugin.Handler) plugin.Handler {
t.Next = next
return t

})

return nil
}

setup.go

Function: ServeDNS

● Let’s look at it in GitHub

● It will be more readable there

Resources

● Plugin how-to: https://coredns.io/manual/toc/#writing-plugins
● GitHub: https://github.com/coredns/coredns
● Learning CoreDNS, John Belamaric & Cricket Liu, O’Reilly Media

○ Infoblox is giving away 60 copies at their booth tomorrow
○ Thursday at 11:00, Sails Pavilion, Booth G7
○ https://github.com/coredns/learning-coredns

● Slack: #coredns on https://slack.cncf.io

Be sure to come to our session tomorrow:

CoreDNS: Beyond the Basics, Thursday at 3:20pm

Q & A

