
Building Blocks

Rohan Gupta, Red Hat
@rohan47

Jose A. Rivera, Red Hat
@jarrpa

How Raw Block PersistentVolumes Changed the Way
We Look at Storage

WARNING
The following presentation may contain
opinions, speculations, and bad jokes.
These are entirely the responsibility and
fault of the presenters, and do not reflect
the values of Red Hat or the Rook project.

Introductions and Agenda

Introductions

Rohan Gupta
Associate Software Engineer, Red Hat

● Graduated from college in 2018.
● Did GSoC with CNCF and worked on

adding NFS operator in Rook.
● Working on OpenShift Container Storage

(OCS) focusing on Rook upstream.
● Loves watching anime and riding

motorbikes.

Jose A. Rivera
Senior Software Engineer, Red Hat

● In and around storage for over 10 years.
● Works on OpenShift Container Storage

(OCS), focusing on Rook and Ceph
● Project lead for the OCS Operator.
● Participates in SIG Storage.
● Likes hitting things, mostly drums.

Agenda

0. Introductions and Agenda

1. Setting the Stage
● Storage in Kubernetes
● Raw Block PVs
● Rook and Rook-Ceph

2. Developing the Characters
● OSDs: Then and Now
● Bumps in the Road

3. Putting on a Show
● Demo Time!

← you are here

Setting the Stage

Storage In
Kubernetes

A primer

Storage Resource Types

● PersistentVolumes (PVs)
○ Represents a volume of storage
○ Different backends define what a "volume" represents

● PersistentVolumeClaims (PVCs)
○ Represents a request to use storage

● StorageClasses (SCs)
○ Provides a point PVCs can use for dynamic provisioning of PVs

Dynamic Provisioning

“A request for storage”

Provider: ABC
Capacity: 10 GiB
Features: XYZ

PersistentVolumeClaim

“A provider of storage”

Provider URL: …
Credentials: …
Options: ...

PersistentVolume

“Provisioned Storage”

Name: …
Size: …
AccessMode: ...

APPLICATION POD(S)

“sets up”

“submits” “submitted to” “creates”

Storage Backend

StorageClass

“instructs” “provisions”

“mounted by”

Raw Block PVs
The new kid in town

● Allows Kubernetes to present storage to containers without a
formatted filesystem

● Many applications, like databases (MongoDB, Cassandra),
can leverage block storage directly, with no additional
configuration

● Allows certain storage providers to provide more consistent
I/O performance and lower latency

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#raw-block-volume-support

Why Raw Block PVs?

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#raw-block-volume-support

VolumeMode, a new field, is how you use the feature

● In Beta since Kubernetes 1.13
● Specifies how the storage will be accessed i.e., as a

filesystem or raw block device
● VolumeMode: Block must be set on both the PV and the PVC
● VolumeMode: File is the backwards-compatible default

VolumeMode: File vs Block

VolumeMode: File

apiVersion: v1
kind: PersistentVolume
metadata:
 name: file-pv
spec:
 capacity:
 storage: 10Gi
 accessModes:
 - ReadWriteOnce
 volumeMode: File ← can omit

 ...

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: file-pvc
spec:
 accessModes:
 - ReadWriteOnce
 volumeMode: File ← can omit
 resources:
 requests:
 storage: 10Gi

apiVersion: v1
kind: Pod
metadata:
 name: pod-with-file-volume
spec:
 containers:
 - name: busybox
 image: busybox
 command:
 - sleep
 - "3600"
 volumeMounts:
 - name: data
 mountPath: "/mnt/foo"
 volumes:
 - name: data
 persistentVolumeClaim:
 claimName: file-pvc

VolumeMode: Block

apiVersion: v1
kind: PersistentVolume
metadata:
 name: block-pv
spec:
 capacity:
 storage: 10Gi
 accessModes:
 - ReadWriteOnce
 volumeMode: Block
 ...

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: block-pvc
spec:
 accessModes:
 - ReadWriteOnce
 volumeMode: Block
 resources:
 requests:
 storage: 10Gi

apiVersion: v1
kind: Pod
metadata:
 name: pod-with-block-volume
spec:
 containers:
 - name: busybox
 image: busybox
 command:
 - sleep
 - "3600"
 volumeDevices:
 - name: data
 devicePath: /dev/vda
 volumes:
 - name: data
 persistentVolumeClaim:
 claimName: block-pvc

These are not synonymous nor related

● Access Modes (i.e. RWX, RWO) denote how many Pods may
attach a PVC at a time and whether or not they can write to it

● Certain storage drivers that provide raw block volumes may
only support a subset of the Access Modes their file volumes
provide
○ This is typically a limitation of the storage attachment technology

VolumeMode vs. AccessMode

Rook and
Rook-Ceph

Cloud-native, software-defined
storage

● Storage Operators for Kubernetes
● Automate

○ Deployment
○ Bootstrapping
○ Configuration
○ Upgrading

What is Rook?

● Implement the Operator Pattern for storage solutions
● Define desired state for the storage resource

○ Storage Cluster, Pool, Object Store, etc.
● Reconcile the actual state to match the desired state

○ Watch for changes in desired state
○ Watch for changes in the cluster
○ Apply changes to the cluster to make it match desired state

https://kubernetes.io/docs/concepts/extend-kubernetes/operator/

Rook Operators

https://kubernetes.io/docs/concepts/extend-kubernetes/operator/

● Ceph in containers
● Resilient, distributed storage

○ Self-healing
● Highly scalable
● Runs on commodity hardware
● Fully open source!

Rook-Ceph

+

Rook-Ceph

MON

MON

MON

 OSD OSD OSD

 OSD

 MGR

apiVersion: ceph.rook.io/v1
kind: CephCluster
metadata:
 name: rook-ceph
spec:
 cephVersion:
 image: ceph/ceph:v14
 mon:
 count: 3
 network:
 hostNetwork: false
 storage:
 useAllNodes: true

https://github.com/rook/rook/blob/master/Documentation/ceph-cluster-crd.md

https://github.com/rook/rook/blob/master/Documentation/ceph-cluster-crd.md

Developing the Characters

OSDs:
Then and Now
Presenting devices to Ceph

● Define storage nodes
○ Names, labels, or all

● Define local devices
○ Manual or auto-discover

● Rook automation
○ Prepare devices
○ Start OSD Pod

Local Storage OSDs

apiVersion: ceph.rook.io/v1
kind: CephCluster
metadata:
 name: rook-ceph
spec:
 ...
 storage:
 useAllNodes: true
 useAllDevices: true

Pros:

● Easy to configure
● Familiar
● Supports any type of

device/appliance that
Linux supports

Local Storage OSDs

Cons:

● Rely on specialized nodes
● Rigid coupling between

compute and storage

● Define storage nodes
○ Names, labels, or all

● Define desired amount of
storage

● Rook automation
○ Prepare devices
○ Start OSD Pod

StorageClassDeviceSets

apiVersion: ceph.rook.io/v1
kind: CephCluster
metadata:
 name: rook-ceph
spec:
 ...
 storage:
 storageClassDeviceSets:
 ...

● SCDSs were designed to be
a generic Rook struct
○ Some features not used in

Rook-Ceph
● name: use for generating

unique and consistent PVC
names

● count: number of devices in
this set

StorageClassDeviceSets

storageClassDeviceSets:
 - name: set1
 count: 3
 portable: true
 volumeClaimTemplates:
 - spec:
 resources:
 requests:
 storage: 10Gi
 storageClassName: gp2
 volumeMode: Block
 accessModes:
 - ReadWriteOnce

● portable: PVCs are allowed
to move between nodes

● volumeClaimTemplates: a
list of PVC templates
○ Just a standard PVC spec
○ Only one is supported for

Rook-Ceph
■ More may be supported for

more advanced features later

StorageClassDeviceSets

storageClassDeviceSets:
 - name: set1
 count: 3
 portable: true
 volumeClaimTemplates:
 - spec:
 resources:
 requests:
 storage: 10Gi
 storageClassName: gp2
 volumeMode: Block
 accessModes:
 - ReadWriteOnce

Pros:

● Offload device distribution
● Device migration between

nodes
● Works with any raw block

PVs, regardless of driver
● Shiny and new 😀 ✨

StorageClassDeviceSets

Cons:

● Requires pre-defined
StorageClasses

● Device support limited by
what's in Kubernetes

● Not as simple to configure
● New and different 😒 🤔

Bumps in the
Road

Gotchas and caveats

Problem: OSD Pods run as privileged Pods

● Host's /dev is bind-mounted into the container
● Prevents Kubernetes from presenting the block device at the

desired path

Solution: Use a non-privileged init container to copy the device (it's
just a file!) to an emptyDir shared between the init container and
the privileged container (hat tip to John Strunk)

Check Your Privilege

Check Your Privilege

 initContainers:
 - command: ["cp"]
 args: ["-a","/set1-dev0","/mnt/set1-dev0"]
 name: blkdevmapper
 volumeDevices:
 - devicePath: /set1-dev0
 name: set1-dev0
 volumeMounts:
 - mountPath: /mnt
 name: set1-dev0-bridge
 ...
 volumes:
 - name: set1-dev0
 persistentVolumeClaim:
 claimName: set1-dev0
 - emptyDir:
 medium: Memory
 name: set1-dev0-bridge
 ...

apiVersion: v1
kind: Pod
spec:
 ...
 containers:
 - command: ["/rook/tini"]
 args:
 - --
 - /rook/rook
 - ceph
 - osd
 - start
 ...
 name: osd
 volumeMounts:
 - mountPath: /mnt
 name: set1-dev0-bridge
 ...

Problem: When spinning up multiple OSDs on the same node,
some OSDs would be unable to find their storage devices

● Rook-Ceph uses LVM for the OSD devices
● Kubernetes creates a loopback device for the storage device
● Because /dev is mounted, this led to the LVM LV having two PV

references, which confused ceph osd start command

Solution: Pass the exact path to the LV (e.g. /dev/<vg_name>/<lv_name>)
that was used by the OSD prepare Job to the OSD daemon

Virtually Lost

Problem: OSDs were clustering
on few nodes

● Reduces data resiliency
● Potentially increases

volume recovery time

Solution: Use placement
affinities

Proper Distribution

name: set1
count: 3
portable: true
...
placement:
 podAntiAffinity:
 preferredDuringSchedulingIgnoredDuringExecution:
 - weight: 100
 podAffinityTerm:
 labelSelector:
 matchExpressions:
 - key: app
 operator: In
 values:
 - rook-ceph-osd
 topologyKey: kubernetes.io/hostname

Putting on a Show

Demo Time!
The moment of truth

Thanks!
https://github.com/rook/rook

https://rook.io/

@rohan47 @jarrpa

https://github.com/rook/rook
https://rook.io/

