
Applying Policy Throughout The Application
Lifecycle with Open Policy Agent

Gareth Rushgrove

Gareth Rushgrove
Director, Product Management, Snyk

Devops Weekly curator
Open Source contributor

@garethr

Agenda What do we mean by policy01
Introducing OPA and Conftest02
Applying policy to a project03
Policy in CI04
Policy in production05

Policy and software development
What do we mean by policy?

policy

a set of ideas or a plan of what to
do in particular situations that
has been agreed to officially by a
group of people, a business
organization, a government, or a
political party.

Cambridge Dictionary

noun [C]
UK /ˈpɒl.ə.si/ US /ˈpɑː.lə.si/

policy

a set of ideas or a plan of what to
do in particular situations that
has been agreed to officially by a
group of people, a business
organization, a government, or a
political party.

Cambridge Dictionary

noun [C]
UK /ˈpɒl.ə.si/ US /ˈpɑː.lə.si/

All Go projects should have
been updated to use Go 1.13

policy

a set of ideas or a plan of what to
do in particular situations that
has been agreed to officially by a
group of people, a business
organization, a government, or a
political party.

Cambridge Dictionary

noun [C]
UK /ˈpɒl.ə.si/ US /ˈpɑː.lə.si/

All Go projects should have
been updated to use Go 1.13

Our open source projects
should all use the Apache
2.0 license

policy

a set of ideas or a plan of what to
do in particular situations that
has been agreed to officially by a
group of people, a business
organization, a government, or a
political party.

Cambridge Dictionary

noun [C]
UK /ˈpɒl.ə.si/ US /ˈpɑː.lə.si/

All Go projects should have
been updated to use Go 1.13

Our open source projects
should all use the Apache
2.0 license

Dockerfiles should all have
a maintainers label and not
use FROM with images
tagged latest

Where in our application lifecycle
do we enforce policy?

ClusterLocal
development

Continuous
integration

The importance of developer feedback

Fast Slow Slower

ClusterLocal
development

Continuous
integration

Open Policy Agent and Conftest
A quick introduction

What is Open Policy Agent?
github.com/open-policy-agent/opa

- An open source policy engine

- A CNCF incubating project

- Usable as a library and a service

- A vibrant open source community
community

- Provides a declarative DSL for authoring
policy (Rego)

Service

OPA

Query
(any JSON value)

Decision
(any JSON value)

Data
(JSON)

Policy
(Rego)

Request, Event, etc.

A quick example
Let’s suggest some places to eat this evening

// Where should we eat while at KubeCon in San Diego?

{

 "restaurants": [

 "Campfire",

 "Galaxy Taco",

 "Olive Garden",

 "Dija Mara",

 "Mikkeller",

 "Wrench and Rodent"

]

}

A quick example
Let’s describe a policy for our culinary preferences

deny["We can't go somewhere with unlimited breadstick"] {

 input.restaurants[_] = "Olive Garden"

}

We should deny any input for which

The “restaurants” list

Contains a value of “Olive Garden”

Open Policy Agent
Integrated into services

Open Policy Agent
Usage today in the Kubernetes community

ClusterLocal
development

Continuous
integration

Open Policy Agent is
normally used here

Open Policy Agent
Shifting policy left

ClusterLocal
development

Continuous
integration

What if we could use Open
Policy Agent here as well?

Conftest
Introduced at KubeCon Barcelona

What is Conftest?
github.com/instrumenta/conftest

- Developer-focused UX for config policy

- An open source project built on top of OPA

- Easy to use with different inputs (JSON,
YAML, INI, HCL, TOML, CUE, Dockerfile)

- Build to be used as a testing tool (JSON,
TAP and plain text output)

- Built-in tools for sharing policy (via Git, OCI
registries, S3 and more)

$ conftest

Test your configuration files using Open Policy Agent

Usage:

 conftest [command]

Available Commands:

 help Help about any command

 parse Print out structured data from your input

 pull Download individual policies

 push Upload OPA bundles to an OCI registry

 test Test your configuration files using Open P

 update Download policy from registry

 verify Verify Rego unit tests

Decision
(any JSON value)

Conftest
A simple CLI tool for asserting policy

$ conftest test restaurants.json -p restaurants.rego

FAIL - restaurants.json - We can't go somewhere with unlimited breadstick

Conftest
Integrated into developer tools

Demo

Applying policy to a real project
Enforcing development standards

Python application example
Check Python development environment settings

package pipfile

deny[msg] {

 version := to_number(input.requires.python_version)

 version < 3

 msg := sprintf("Should be using Python 3, currently Using Python %v", [version])

}

deny[msg] {

 not input.source[i].verify_ssl = true

 name := input.source[i].name

 msg := sprintf("You must verify SSL for %v", [name])

}

Python application example
Check Python development environment settings

$ conftest test --input toml --namespace pipfile Pipfile

FAIL - Pipfile - You must verify SSL for pypi

FAIL - Pipfile - Should be using Python 3, currently Using Python 2.

Python application example
Check we are using specific testing tools

$ conftest test --namespace pytest pytest.ini

WARN - pytest.ini - Consider enforcing type checking when running tests

WARN - pytest.ini - Consider enabling coverage reporting for test

Python application example
Check the Dockerfile for policy issues

$ conftest test --namespace docker Dockerfile

FAIL - Dockerfile - Using latest tag on base image python

Python application example
Run unit tests for our policies

$ conftest verify

PASS - policy/policy/pytest_test.rego - data.pytest.test_require_black

PASS - policy/policy/pytest_test.rego - data.pytest.test_require_isort

PASS - policy/policy/pytest_test.rego - data.pytest.test_require_isort_and_black

PASS - policy/policy/pytest_test.rego - data.pytest.test_recommend_coverage

PASS - policy/policy/pytest_test.rego - data.pytest.test_recommend_type_checker

PASS - policy/policy/pytest_test.rego - data.pytest.test_valid_with_required_options

PASS - policy/policy/pytest_test.rego - data.pytest.test_no_warnings_with_recommended_option

Python application example
Check policy in our Python unit tests

def test_policy(conftest):

 run = conftest.verify()

 assert run.success

def test_pytest_config(conftest):

 run = conftest.test("pytest.ini", namespace="pytest")

 assert run.success

def test_kubernetes_manifest_for_warnings(conftest):

 run = conftest.test("snyky.yaml")

 result = run.results[0]

 assert not result.Warnings

Demo

Kubernetes security policy
Applying general purpose tools to Kubernetes

The current configuration explosion
Kubernetes YAML files

apiVersion: apps/v1

kind: Deployment

metadata:

 name: hello-kubernetes

spec:

 replicas: 3

 selector:

 matchLabels:

 app: hello-kubernetes

 template:

 metadata:

 labels:

 app: hello-kubernetes

 spec:

 containers:

 - name: hello-kubernetes

~1.7 million
Kubernetes
configuration files
public on GitHub

Prior-art
KubeSec

Shared policies
Porting KubeSec rules to Rego

package main

import data.lib.kubernetes

https://kubesec.io/basics/spec-hostnetwork/

deny[msg] {

 kubernetes.pods[pod]

 pod.spec.hostNetwork

 msg = kubernetes.format(sprintf("The %s %s is connected to the host network", [kubernetes.kind, kuber

}

Shared policies
PodSecurityPolicy in Rego

Demo

Conftest
Helm plugin

Conftest
Helm plugin

$ helm conftest snyky

FAIL - snyky in the Deployment garethr/snyky has an image, snyky, using the latest tag

FAIL - snyky in the Deployment snyky does not have a memory limit set

FAIL - snyky in the Deployment snyky does not have a CPU limit set

FAIL - snyky in the Deployment snyky doesn't drop all capabilities

FAIL - snyky in the Deployment snyky is not using a read only root filesystem

FAIL - snyky in the Deployment snyky allows priviledge escalation

FAIL - snyky in the Deployment snyky is running as root

Error: plugin "conftest" exited with error

Policy in CI
Always be enforcing

Tekton Pipeline
Describe a pipeline to run our policy

apiVersion: tekton.dev/v1alpha1

kind: Pipeline

metadata:

 name: snyky-pipeline

spec:

 resources:

 - name: source-repo

 type: git

 tasks:

 - name: conftest-verify

 taskRef:

 name: conftest-verify

 resources:

 inputs:

 - name: source

 resource: source-repo

 - name: pipfile-conftest

Tekton Pipeline
Policy CI graph

Run
conftest
verify

Run Pipfile
policies

Run
Dockerfile

policies

Run Helm
chart

policies

Run pytest
policies

Run security
policies

Tekton Pipeline
Start a pipeline run

$ tkn pipeline start snyky-pipeline

? Choose the git resource to use for source-repo: snyky-git

(https://github.com/garethr/snyky.git)

Pipelinerun started: snyky-pipeline-run-xrg96

In order to track the pipelinerun progress run:

tkn pipelinerun logs snyky-pipeline-run-xrg96 -f -n default

Tekton Pipeline
View the pipeline logs

$ tkn pipelinerun logs snyky-pipeline-run-xrg96 -f -n default

...

[pytest-conftest : conftest] WARN - pytest.ini - Consider enforcing type checking when running tests

[pytest-conftest : conftest] WARN - pytest.ini - Consider enabling coverage reporting for tests

[conftest-verify : conftest-verify] PASS - policy/policy/pytest_test.rego - data.pytest.test_require_blac

[conftest-verify : conftest-verify] PASS - policy/policy/pytest_test.rego - data.pytest.test_require_isor

[conftest-verify : conftest-verify] PASS - policy/policy/pytest_test.rego - data.pytest.test_require_isor

[conftest-verify : conftest-verify] PASS - policy/policy/pytest_test.rego - data.pytest.test_recommend_co

[conftest-verify : conftest-verify] PASS - policy/policy/pytest_test.rego - data.pytest.test_recommend_ty

[conftest-verify : conftest-verify] PASS - policy/policy/pytest_test.rego - data.pytest.test_valid_with_r

[conftest-verify : conftest-verify] PASS - policy/policy/pytest_test.rego - data.pytest.test_no_warnings_

...

Demo

Policy in production
Gates and auditing

Gatekeeper
Policy controller for Kubernetes

Gatekeeper
Constraints and ConstraintTemplates

apiVersion: templates.gatekeeper.sh/v1beta1

kind: ConstraintTemplate

metadata:

 name: securitycontrols

spec:

 crd:

 spec:

 names:

 kind: SecurityControls

 listKind: SecurityControlsList

 plural: securitycontrols

 singular: securitycontrol

 targets:

 - libs:

 - |

 package lib.kubernetes

 default is_gatekeeper = false

Gatekeeper
Generating ConstraintTemplates from Rego

$ pk build SecurityControls.rego

[SecurityControls] Generating a ConstraintTemplate from "SecurityControls.rego"

[SecurityControls] Searching "lib" for additional rego files

[SecurityControls] Adding library from "lib/kubernetes.rego"

[SecurityControls] Saving to "SecurityControls.yaml"

Gatekeeper
Keeping ConstraintTemplates up-to-date

Push Rego
source

Run
conftest
verify

Run pk
build
*.rego

Commit

Gatekeeper
Keeping ConstraintTemplates up-to-date

Gatekeeper
Block deployments with policy violations

$ kubectl apply -f deployment.yaml

Error from server ([denied by enforce-deployment-and-pod-security-controls] nginx in the

Deployment nginx-deployment does not have a memory limit set

[denied by enforce-deployment-and-pod-security-controls] nginx in the Deployment nginx-deployment

does not have a CPU limit set

[denied by enforce-deployment-and-pod-security-controls] nginx in the Deployment nginx-deployment

doesn't drop all capabilities

[denied by enforce-deployment-and-pod-security-controls] nginx in the Deployment nginx-deployment

is not using a read only root filesystem

[denied by enforce-deployment-and-pod-security-controls] nginx in the Deployment nginx-deployment

is running as root): error when creating "deployment.yaml": admission webhook

"validation.gatekeeper.sh" denied the request: [denied by

enforce-deployment-and-pod-security-controls] nginx in the Deployment nginx-deployment does not

have a memory limit set

[denied by enforce-deployment-and-pod-security-controls] nginx in the Deployment nginx-deployment

does not have a CPU limit set

Gatekeeper
Audit running workloads against defined policy

$ kubectl get SecurityControls audit-deployment-and-pod-security-controls -o yaml

...

 - enforcementAction: dryrun

 kind: Deployment

 message: nginx in the Deployment nginx-deployment doesn't drop all capabilities

 name: nginx-deployment

 namespace: audit

 - enforcementAction: dryrun

 kind: Deployment

 message: nginx in the Deployment nginx-deployment is not using a read only root

 filesystem

 name: nginx-deployment

 namespace: audit

 - enforcementAction: dryrun

 kind: Deployment

 message: nginx in the Deployment nginx-deployment allows privilege escalation

Demo

Conclusions and the future
If all you remember is...

Policy throughout the application lifecycle

ClusterLocal
development

Continuous
integration

Continuously enforce
policy, and provide fast

feedback to
developers

Gate your clusters
against violations, and

continuously audit
workloads

Make adopting good
development practice

easier

1. Open Source is
pretty great

OPA makes building on top
easy. Conftest went from me

hacking on something to 6 core
maintainers in 6 months.

Thanks tsandall, xchapter7x, brendanjryan, Proplex, jpreese, boranx and Blokje5

2. A Policy Toolkit
OPA and Conftest are not tool

or platform specific. That leaves
lots of room for more domain

specific tools built on-top.

3. Lets get sharing
A lot of policy is at the

organisation or community
level, not per project. Lots of

potential for reuse and sharing.
This is the next frontier for

policy as code.

Thanks
And any questions?

