

Haowei Cai (@roycaihw), Google

Admission Webhooks: Configuration
and Debugging Best Practices

About me

Haowei Cai (@roycaihw)
Software Engineer for Google Cloud. He is an active contributor for
Kubernetes SIG API Machinery.

Agenda

● What are Admission Webhooks?
● How to configure my admission webhooks following the best practices?
● How to debug my admission webhooks?
● Demo
● Key Takeaways

What are Admission Webhooks?

Admission

● Admission Controllers
○ kube-apiserver --enable-admission-plugins=NamespaceLifecycle,LimitRanger ...

API HTTP
Handler

AuthN /
AuthZ Admission Controllers Persisted

to Etcd

API request

Admission

● Admission Controllers
○ Mutating
○ Validating

API HTTP
Handler

AuthN /
AuthZ

Persisted
to Etcd

API request Mutating
Admission
Controllers

Object
Schema

Validation

Validating
Admission
Controllers

Admission

● Admission Controllers
○ Mutating
○ Validating

API HTTP
Handler

AuthN /
AuthZ

Persisted
to Etcd

API request Mutating
Admission
Controllers

Object
Schema

Validation

Validating
Admission
Controllers

Admission Webhooks

● Admission Controllers
● Dynamic Admission Controllers:

○ MutatingAdmissionWebhooks
○ ValidatingAdmissionWebhooks

API HTTP
Handler

AuthN /
AuthZ

Persisted
to Etcd

API request Mutating
Admission
Controllers

Object
Schema

Validation

Validating
Admission
Controllers

Webhook Webhook Webhook

Why do I need admission webhooks?

● What built-in admission controllers do:
○ Security
○ Governance
○ Configuration management
○ etc..

How to configure my admission webhooks?

Configuration fields

Configuration best practices

Best practices

● Idempotence
● Intercepting all versions of an object
● Availability
● Guaranteeing the final state of the object is seen
● Side effects
● Avoiding operating on the kube-system namespace

1. Idempotence

● Why did Kubernetes API Server call my mutating webhook twice for
the same request?

1. Idempotence

● Why did Kubernetes API Server call my mutating webhook twice?
○ Ordering is hard

■ Some other admission controller may mutate the object
■ The decision can be different depending on the order

1. Idempotence

● Why did Kubernetes API Server call my mutating webhook twice?
○ Ordering is hard

■ Some other admission controller may mutate the object
■ The decision can be different depending on the order

1. Idempotence

● Why did Kubernetes API Server call my mutating webhook twice?
○ Ordering is hard

■ Some other admission controller may mutate the object
■ The decision can be different depending on the order

1. Idempotence

● Why did Kubernetes API Server call my mutating webhook twice?
○ Ordering is hard

■ Some other admission controller may mutate the object
■ The decision can be different depending on the order

1. Idempotence

● Why did Kubernetes API Server call my mutating webhook twice?
○ Ordering is hard

■ Some other admission controller may mutate the object
■ The decision can be different depending on the order

1. Idempotence

● Why did Kubernetes API Server call my mutating webhook twice?
○ Ordering is hard

■ Some other admission controller may mutate the object
■ The decision can be different depending on the order

1. Idempotence

● Why did Kubernetes API Server call my mutating webhook twice?
○ Ordering is hard

■ Some other admission controller may mutate the object
■ The decision can be different depending on the order

○ Best effort re-invocation to make sure everyone see the latest
state -> reinvocationPolicy: IfNeeded

1. Idempotence

● Best practice: be idempotent
○ (From Wikipedia:) Idempotence is the property of certain operations

in mathematics and computer science whereby they can be applied
multiple times without changing the result beyond the initial
application.

Example of idempotent webhook

Example of idempotent webhook

Example of non-idempotent webhook

Example of non-idempotent webhook

2. Intercepting all versions of an object

● Deployment API:
○ extensions/v1beta1
○ apps/v1beta1
○ apps/v1beta2
○ apps/v1

● Deployment API:
○ extensions/v1beta1
○ apps/v1beta1
○ apps/v1beta2
○ apps/v1

2. Intercepting all versions of an object

3. Availability

● Time calling webhook builds-up time completing API requests

API HTTP
Handler

AuthN /
AuthZ

Persisted
to Etcd

API request Mutating
Admission
Controllers

Object
Schema

Validation

Validating
Admission
Controllers

Webhook Webhook Webhook

API request latency

Webhook
latency

Webhook
latency

3. Availability

● Time calling webhook builds-up time completing API requests

4. Guaranteeing the final state of the object is seen

API HTTP
Handler

AuthN /
AuthZ

Persisted
to Etcd

API request Mutating
Admission
Controllers

Object
Schema

Validation

Validating
Admission
Controllers

Always
Pull
Images

Another
Webhook

Webhook

● If you use a mutating webhook to enforce security policy, make sure to
use a validating webhook to ensure that.

4. Guaranteeing the final state of the object is seen

API HTTP
Handler

AuthN /
AuthZ

Persisted
to Etcd

API request Mutating
Admission
Controllers

Object
Schema

Validation

Validating
Admission
Controllers

Always
Pull
Images

Another
Webhook

Validate
Always
Pull
Images

● If you use a mutating webhook to enforce security policy, make sure to
use a validating webhook to ensure that.

5. Side effects

● Mutate related resources as part of request processing. E.g.
○ Incrementing quota usage

● Best practices:
○ 1. avoid side effects if possible
○ 2. have a reconciliation mechanism (e.g. a controller) in case the

request didn’t make through
○ 3. don’t trigger the side effect in dry run

5. Side effects

● Best practices:
○ 3. don’t trigger the side effect in dry run

6. Avoiding operating on the kube-system namespace

● Safety (system-critical components)
○ kube-apiserver post-start hooks
○ Control plane components

■ Service accounts
■ kube-dns

● Efficiency

How to debug my admission webhooks?

Types of webhook failure/rejection

Failure
category Valid webhook rejection Error calling webhook

apiserver
internal

error

What
happened

403
webhook
forbids

500
webhook
internal

error

Timeout Connection
failure

Malformed
webhook
response

apiserver
internal

error

End-user
see HTTP

status
403 500 500 500 500 500

Types of webhook failure/rejection

Failure
category Valid webhook rejection Error calling webhook

Error
calling

webhook

failure
Policy:
Ignore

apiserver
internal

error

What
happened

403
webhook
forbids

500
webhook
internal

error

Timeout Connection
failure

Malformed
webhook
response

Timeout/C
onnection/
Malformed
response

apiserver
internal

error

End-user
see HTTP

status
403 500 500 500 500 No error 500

Metrics

● kube-apiserver /metrics endpoint

● Apiserver_admission_webhook_admission_duration_seconds
○ Histogram metrics

● Apiserver_admission_webhook_rejection_count
○ Counter metrics

■ Name
■ Operation
■ Type
■ Error type
■ Rejection code

Metrics

Besides monitoring

● Why my mutating webhook seems not working?
○ E.g. setting a field seems to be ignored by the API server

● Why my mutating webhook worked but in an unexpected way?
○ Bug in my webhook backend?
○ Bug in API server?
○ Something else mutated the request after my webhook?
○ etc.

Audit Logging

● Auditing https://kubernetes.io/docs/tasks/debug-application-cluster/audit/

○ what happened?
○ when did it happen?
○ who initiated it?
○ on what did it happen?
○ where was it observed?
○ from where was it initiated?
○ to where was it going?

https://kubernetes.io/docs/tasks/debug-application-cluster/audit/

Audit Logging

Audit Logging

Audit Record for Mutating Webhooks

● Annotations
○ Key-value pairs

■ “mutation.webhook.admission.k8s.io/round_{}_index_{}”
■ “patch.webhook.admission.k8s.io/round_{}_index_{}”

Audit Record for Mutating Webhooks

● Annotations
○ Key-value pairs

■ “mutation.webhook.admission.k8s.io/round_{}_index_{}”
■ “patch.webhook.admission.k8s.io/round_{}_index_{}”

Patch occurrence

● Key: mutation.webhook.admission.k8s.io/round_{}_index_{}”
○ E.g. round_0_index_1
○ Recorded at Metadata audit level or higher

● Value:

Patch mutation

● Key: patch.webhook.admission.k8s.io/round_{}_index_{}”
○ E.g. round_1_index_3
○ Recorded at Request audit level or higher

● Value:

Patch mutation

Debug the webhook backend

● Have good logging for the backend
○ What AdmissionReview it got
○ What AdmissionResponse it responded

 Demo

Key Takeaways

● Configure your admission webhooks following the best practices
● Use metrics and audit logging to monitor and debug your

webhooks

Thank you!
Q&A

Reference

● https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/

● https://kubernetes.io/docs/reference/access-authn-authz/extensible-admission-controllers

● https://kubernetes.io/blog/2019/03/21/a-guide-to-kubernetes-admission-controllers/

● https://kubernetes.io/docs/tasks/debug-application-cluster/audit/

https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/
https://kubernetes.io/docs/reference/access-authn-authz/extensible-admission-controllers
https://kubernetes.io/blog/2019/03/21/a-guide-to-kubernetes-admission-controllers/
https://kubernetes.io/docs/tasks/debug-application-cluster/audit/

