
Using K8s Audit Logs to
Secure Your Cluster.

Mark Stemm, Falco Engineer

About me.

Mark Stemm
• Senior Software Engineer, Sysdig
• Maintainer, Falco

@mstemm

• New in K8s v1.11, updated in K8s 1.13
• Provides chronological set of records documenting changes

to cluster
• Each record is a JSON object
• Audit policy controls which events are included in event log
• Log backend controls where events are sent
• Log file
• Webhook

K8s audit events.

{

 "kind": "Event",

 "timestamp": "2018-10-26T13:00:25Z",

 "stage": "ResponseComplete",

 "verb": "delete",

 "requestURI": "/api/v1/namespaces/foo",

 "user": { "username": "minikube-user" },

 "responseStatus": { "code": 200 },

 "objectRef": { "resource": “namespaces", "namespace": “foo” },

 "level": "Request",

 "auditID": "693f4726-2430-450a-83e1-123c050fde98",

 "annotations": { "authorization.k8s.io/decision": "allow" }

}

K8s audit events.

• Create/destroy/modify deployment, namespace, pod, etc.
• Attach/exec into pod
• Create service account to access resources
• Create/modify role/cluster role to define access
• Create a role binding to link roles and accounts
• Listing/reading resources: kubectl get pods, etc.
• Actions by users (minikube) as well as other internal K8s services (kube-scheduler)

K8s audit event examples.

• Audit Policy
• Controls what events are included
• Yaml file containing a list of rules.
• An event must match a rule to be included

• Audit Backend
• Where audit events go
• logfile, webhook (>= 1.11)
• dynamic (>= 1.13)

K8s audit configuration.

• Log backend
• One JSON record per event, per line
• Controls for location, log rotation (size and/or age)

• Webhook backend
• Batch of records (JSON Array) per group of events
• Controls for location (kubeconfig), batching algorithm, throttling, etc.

• Dynamic
• Like above, but managed like other K8s resources

K8s audit backends.

• Audit policy and backend config are static
• Command line arguments to kube-apiserver

• —audit-webhook-config-file
• —audit-log-path
• —audit-policy-file
• etc.

• Must be specified at startup or api server must be restarted to pick up new config
• Can’t directly view config/policy other than examining files/ps output

Enabling K8s audit in 1.11.

• Policy and Webhook specified in AuditSink objects
• Managed like other K8s Resources
• Creating AuditSink objects requires cluster-admin

privileges
• Can create multiple AuditSinks, each with different policy/

destination

Enabling K8s audit in 1.13.

• jq: command-line json parser
• Reads input json objects, filters/transforms, writes output object

Searching audit events (hard way).

$ echo '{"key": "some-value"}' | jq '.key'

“some-value”

$ echo [{"key": "v1"},{"key": "v2"}]' | jq '.[] | select(.key == "v1")'

{"key": “v1"}

$ echo '{"key": "some-value"}' | jq '"Prop key has value= " + .key'

"Prop key has value=some-value"
Transform example

Filter example

Select example

JQ examples for K8s audit events.
Create Namespace
(select(.verb == "create" and .objectRef.resource=="namespaces") |
 "[" + .stageTimestamp + "] " + "Namespace Created: name=" + .objectRef.name),

Delete Namespace
(select(.verb == "delete" and .objectRef.resource=="namespaces") |
 "[" + .stageTimestamp + "] " + "Namespace Deleted: name=" + .objectRef.name),

Create Configmap containing password or AWS Private Key
(select(.verb == "create" and .objectRef.resource=="configmaps" and
 (.requestObject.data | tostring | contains("aws_access_key_id"))) |
 "[" + .stageTimestamp + "] " + "Configmap Created: name=" + .objectRef.name +
 " Configmap= "+ (.requestObject.data | tostring)),

• Full List: https://gist.github.com/mstemm, “JQ Filters for K8s Audit Events"

• Falco (CNCF Project) supports K8s audit events!
• Embedded web server to receive events
• Write rules in yaml with filter conditions and

output expressions
• ~30 built-in rules to detect:
• Suspicious activity
• Change-related activity
• All activity (very verbose)

Searching audit events (easy way).

Falco + K8s audit events.

- macro: contains_private_credentials
 condition: >
 (ka.req.configmap.obj contains "aws_access_key_id" or
 ka.req.configmap.obj contains "aws_s3_access_key_id" or
 ka.req.configmap.obj contains “password")

- macro: configmap
 condition: ka.target.resource=configmaps

- macro: modify
 condition: (ka.verb in (create,update,patch))

- rule: Create/Modify Configmap With Private Credentials
 desc: Detect creating/modifying a configmap containing a private credential
 (aws key, password, etc.)
 condition: configmap and modify and contains_private_credentials
 output: K8s configmap with private credential (user=%ka.user.name
 verb=%ka.verb name=%ka.req.configmap.name
 configmap=%ka.req.configmap.name config=%ka.req.configmap.obj)
 priority: WARNING
 source: k8s_audit
 tags: [k8s]

K8s audit rule example.

• Watch changes to your cluster
• Falco k8s_audit_rules.yaml rule names

• K8s Deployment {Created,Deleted}

• K8s Service {Created,Deleted}
• K8s Namespace {Created,Deleted}
• K8s ConfigMap {Created,Deleted}

• K8s Serviceaccount {Created,Deleted}

• K8s Role/Clusterrole {Created,Deleted}
• K8s Role/Clusterrolebinding {Created,Deleted}

K8s audit use cases.

• Enumerate what’s allowed, look for exceptions
• Disallowed K8s User

• Create Disallowed Pod
• Create Disallowed Namespace

K8s audit use cases.

• Limit what pods can access
• Create Privileged Pod:

• Look for pod create where "securityContext":{"privileged":true}

• Create Sensitive Mount Pod:
• Look for pod create where pod mounts sensitive paths from host filesystem

• Create HostNetwork Pod:

• Look for pod create where pod uses host network namespace
• Pod Created in Kube Namespace:

• Look for pod create in kube-system or kube-public namespaces
• Limit access to pods

• Attach/Exec Pod:

• Look for any kubectl exec/attach pod …

K8s audit use cases

• Protect users/accounts
• Service Account Created in Kube Namespace

• Creating service account in kube-system/kube-public namespaces

• System ClusterRole Modified/Deleted

• Any delete/modify to roles starting with “system:”

• Attach to cluster-admin Role

• Creating a role binding linked to cluster-admin role

• ClusterRole With Wildcard Created

• Creating a role that does not explicitly enumerate resources or verbs (e.g. “resources":["*"])

• ClusterRole With Write Privileges Created
• Creating a role that can perform deletes/writes

• ClusterRole With Pod Exec Created
• Creating a role that can exec/attach to pods

K8s audit use cases

• Other
• Create/Modify Configmap With Private Credentials
• Create configmap containing “password”, “aws_access_key”, etc.

• Anonymous Request Allowed
• Any request by system:anonymous that was allowed

• Create NodePort Service
• Create a service with a NodePort service type

K8s audit use cases

Demo.

Join the community.

Website
• https://falco.org
Public Slack
• http://slack.sysdig.com/
• https://sysdig.slack.com/messages/falco
Blog
• https://sysdig.com/blog/tag/falco/

Github

• https://github.com/falcosecurity/falco

Documentation

• https://github.com/falcosecurity/falco/wiki

Docker Hub

• https://hub.docker.com/r/falcosecurity/falco/

Thank You!

Backup Slides

• Who
• user, groups, username, sourceIPs

• What
• verb, objectRef

• When
• stageTimestamp

• Result
• authorization.k8s.io/{decision,reason}
• responseStatus

K8s audit events.

K8s audit policy.
apiVersion: audit.k8s.io/v1 # This is required.
kind: Policy
Don't generate audit events for all requests in RequestReceived stage.
omitStages:
 - "RequestReceived"
rules:
 # Log pod changes at RequestResponse level
 - level: RequestResponse
 resources:
 - group: ""
 # Resource "pods" doesn't match requests to any subresource of pods,
 # which is consistent with the RBAC policy.
 resources: ["pods"]
 # Log "pods/log", "pods/status" at Metadata level
 - level: Metadata
 resources:
 - group: ""
 resources: ["pods/log", "pods/status"]

K8s audit sink.
apiVersion: auditregistration.k8s.io/v1alpha1
kind: AuditSink
metadata:
 name: mysink
spec:
 policy:
 level: Metadata
 stages:
 - ResponseComplete
 webhook:
 throttle:
 qps: 10
 burst: 15
 clientConfig:
 url: "https://audit.app"

