Unit testing your
Kubernetes configuration

Using Open Policy Agent

Gareth Rushgrove | Director, Product Management | Snyk
May, 2019

snyk

-—

-

-~

<

-€

P—

— -

T — —_—
e

"\ o

Agenda

snyk.io

A quick introduction to Open Policy Agent
Shift-left testing

Introducing conftest

Rego as a language

Portability between different Kubernetes solutions

Not just Kubernetes

L

snyk.io

Open Policy Agent

A policy enforcement engine for configuration

L

What is Open Policy Agent?

‘ Open Policy Agent Documentation Tutorials Playground Q O e O

Policy-based control for cloud native environments

Empower your administrators with flexible, fine-grained control across your entire stack.

Get started | Learn more]

How Open Policy Agent works

A growing ecosystem

Istio 1.1

$} Concepts

P Setup

§= Tasks

(B Examples

*F] Reference

V Configuration
> Traffic Management
> Authorization
V Policies and Telemetry

Attribute
Vocabulary

Expression
Language

' Adapters

Apache
SkyWalking

Apigee
Circonus
CloudMonitor
Cloudwatch
Datadog
Denier

Fluentd

» Ceph Object Gateway »

ISTIO / DOCS / REFERENCE / CONFIGURATION / POLICIES AN Ceph
OPA TABLE OF CONTENTS

Intro to Ceph
Installation (ceph-deploy)
The opa adapter exposes an Open Policy Agent engj| Installation (Manual)
Installation (Kubernetes + Helm)
. Ceph Storage Cluster
This adapter supports the authorization template. Ceph Filesystem
Ceph Block Device
Ceph Object Gateway
Manual Install w/Civetweb
HTTP Frontends
Pool Placement and Storage Classes
Multisite Configuration
Configuring Pools
Config Reference
Admin Guide
S3API
Swift API
Admin Ops API
policy Python binding
- |+ Export over NFS
OpenStack Keystone Integration
policy OpenStack Barbican Integration
{ Open Policy Agent Integration
» Configure OPA

Params

Configuration format for the opa adapter.

Example configuration:

package mixerauthz

« Configure the Ceph Object Gateway
= How does the RGW-OPA integration work

Multi-tenancy
Compression
LDAP Authentication
Server-Side Encryption
Bucket Policy
Dynamic bucket index resharding
Multi factor authentication
Sync Modules
allow = true { Data Layout in RADOS
rule = policy[_].rule STS Lite
input.subject.user = rule.users[_]
input.action.method = rule.verbs

default allow = false

Role
Troubleshooting

checkMethod: "data.mixerauthz.allow" Manpage radosgw
*rus Manpage radosgw-admin

Notice: This document is for a development version of Cepl

OPEN POLICY AGENT INTEGRATION
Open Policy Agent (OPA) is a lightweight general-purpose polit
integrated as a sidecar, host-level daemon, or library.

Services can offload policy decisions to OPA by executing quel
decisions.

CONFIGURE OPA

To configure OPA, load custom policies into OPA that control
can also be loaded into OPA to make decisions.

Policies and data can be loaded into OPA in the following ways
» OPA's RESTful APIs
» OPA's bundle feature that downloads policies and d
» Filesystem

CONFIGURE THE CEPH OBJECT GATEWAY

The following configuration options are available for OPA integ

opa authz = {use opa server to aut
url = {opa server url:opa server p
token = {opa bearer token}

verify ssl = {verify opa server ss

HOW DOES THE RGW-OPA INTEGRATION WORK

After a user is authenticated, OPA can be used to check if the

OPA responds with an allow or deny decision which is sent bac

O styra

Declarative /
Secure

Compliance guardrails
from tribal kno

ostgpo ® Q@ tester

WORKSPACE 8 Settings
Q

sysTeMs ®

fead007.styra.com

Decisions

)

v @ Analytics Cluster -

v 3 Admission Control

@ Rules 2
B Rules
B Tests

> @) Development Cluster
Production Cluster

Test Cluster

_ Vincent Janelle
¥ @randomfrequency

Replying to @garethr

It's my new favourite hammer.

7:15 PM - 5 May 2019

Shift left

Faster feedback

snyk.io

Shift-left testing is an approach to software testing and

system testing in which testing is performed earlier in the

lifecycle (i.e., moved left on the project timeline).
Wikipedia

Development cycle

Local
development

Continuous

: . Cluster
integration

Slow Slower

Development cycle

Local Continuous Cluster

development integration

Open Policy Agent is
normally used here

9

Development cycle

Local Continuous Cluster

development integration

What if we could use Open
Policy Agent here as well?

9

Introducing conftest

Test your configuration locally, and in Cl

snyk.io

Introducing conftest

£ instrumenta / conftest @uUnwatchv | 2 &Star 10 | YFork 1
<% Code Issues 0 Pull requests 0 Projects 0 Wiki Insights Settings

Write tests against structured configuration data using the Rego query language Edit
kubemetes testing rego openpolicyagent instrumenta Manage topics

D 39 commits ¥ 1branch © 7 releases 22 1 contributor s View license
-

Branch: master v New pull request Create new file = Upload files = Find File Clone or download v
i garethr Remove vendored pkg from oras .. Latest commit 662758 7 hours ago
il .github added automatic releases using goreleaser a month ago
il examples Added Docker Compose example a day ago
B .gitignore added automatic releases using goreleaser a month ago
[E) .goreleaser.yml added scoop package publishing 18 days ago
[E) Dockerfile convert to using Go modules a month ago
B LICENSE added an explicit license a month ago
[E) README.md Support configuration of the namespace to find rules 3 days ago
[£) acceptance.bats Added acceptance tests demonstraing configuration file usage 3 days ago
[E conftest.go Remove vendored pkg from oras 7 hours ago
B go.mod Remove vendored pkg from oras 7 hours ago

B go.sum Remove vendored pkg from oras 7 hours ago

Write your policies

package
[msg] {
.kind = "Deployment™
not .spec.template.spec.securityContext.runAsNonRoot = true
msg = "Containers must not run as root"
}
[msg] {
.kind = "Deployment"”
not .spec.selector.matchLabels.app
msg = "Containers must provide app label for pod selectors”
}

snyk.io snyk

Explaining what we just wrote

[msg] {
.kind = "Deployment”
not .spec.template.spec.securityContext.runAsNonRoot = true
msg = "Containers must not run as root"

¥

We should deny any input for which

Deployment is the value for kind
and

When runAsNonRoot is set to false

snyk.io snyk

Run tests locally with conftest

$ conftest test deployment.yaml
deployment.yaml

Deployments are not allowed

$ echo $status
1

snyk.io snyk

Demo

snyk.io

Rego as a language

The usual pros and cons of a DSL

snyk.io

Good documentation

Open Policy Agent

v0.10.7 |latest | v

DOCUMENTATION
Introduction
How Does OPA Work?

How Do | Write Policies?
What is Rego?
Why use Rego?
The Basics
Scalar Values
Strings
Composite Values
Variables
References
Comprehensions
Rules
Negation
Modules
With Keyword

How Do | Write Policies?

OPA is purpose built for reasoning about information represented in structured documents. The data that your service and its users
publish can be inspected and transformed using OPA’s native query language Rego.

What is Rego?

Rego was inspired by Datalog, which is a well understood, decades old query language. Rego extends Datalog to support structured
document models such as JSON.

Rego queries are assertions on data stored in OPA. These queries can be used to define policies that enumerate instances of data that
violate the expected state of the system.

Why use Rego?
Use Rego for defining policy that is easy to read and write.
Rego focuses on providing powerful support for referencing nested documents and ensuring that queries are correct and unambiguous.

Rego is declarative so policy authors can focus on what queries should return rather than how queries should be executed. These
queries are simpler and more concise than the equivalent in an imperative language.

The Rego playground

1 package main

2|

3 version {

4 to_number(input.version)

5)

7 deny[msg] {

8 endswith(input.services[_].image, ":latest")
9 msg = "No images tagged latest"”

10}

11

12 deny[msg] {

13 sersion < 3.5

14 msg = "Must be using at least version 3.5 of the Compose file format"
15 |}

5] Input @ Output &,

1v| { 1 # Evaluated package in 69.69 ps.

2 "version”: "3.4", 2+ {

3 "services": { 3 "result”: {

4~ "web": { 4~ "deny": [

5 ~BaPldsy LN, 5 "No images tagged latest”,

6 "ports": [6 "Must be using at least version 3.5 of the Compose file format
7 "5000:5000" 7 1,

8 1 8 "version": true

9 9 }

10 v 10 | }

A Ve e

Built-in testing tools

package

test_deployment_without_security context {

deny["Containers must not run as root"] with input as {"kind": "Deployment"}
}
test_deployment_with_security context {
no_violations with input as {"kind": "Deployment", "spec": {
"selector": { "matchLabels": { "app": "something", "release": "something" }},

"template": { "spec": { "securityContext": { "runAsNonRoot": true }}}}}

test services not _denied {
no_violations with input as {"kind": "Service"}

}

test services issue warning {
warn["Services are not allowed"] with input as {"kind": "Service"}

snyk

Open Policy Agent test runner

$ opa test --verbose .

data

data
data

.main.test deployment without security context: PASS (1.029us)
data.

main.test deployment with security context: PASS (1.058us)

.main.test services not denied: PASS (701ns)
.main.test services issue_warning: PASS (614ns)

snyk.io

snyk

Not much public rego code yet

In:path .rego extension:rego

Open Policy Agent Bundles

Open Policy Agent B u n d I es

v0.10.7 [latest| v
OPA can periodically download bundles of policy and data from remote HTTP servers. The policies and data are loaded on the fly

DOCUMENTATION . without requiring a restart of OPA. Once the policies and data have been loaded, they are enforced immediately. Policies and data

. loaded from bundles are accessible via the standard OPA REST API.
Introduction

How Does OPA Work? Bundles provide an alternative to pushing policies into OPA via the REST APlIs. By configuring OPA to download bundles from a remote
How Do | Write Policies? HTTP server, you can ensure that OPA has an up-to-date copy of policies and data required for enforcement at all times.

How Do | Test Policies? OPA can only be configured to download one bundle at a time. You cannot configure OPA to download multiple bundles. By default, the

Language Reference OPA REST APIs will prevent you from modifying policy and data loaded via bundles. If you need to load policy and data from multiple
Configuration Reference sources, see the section below.
REST API

See the Configuration Reference for configuration details.
Deployments

Bundles
Bundle Service API

Bundle Service API

OPA expects the service to expose an API endpoint that serves bundles. The bundle API should allow clients to download named
Multiple Sources of Policy and Da bundles.

Bundle File Format

Debugging Your Bundles

Status GET /<bundle_prefix>/<name> HTTP/1.1

Reusing OCI registries

STEVE LASKER

eee

Cloud Natlue Artlfact
Registries evolve from Docker
Container Registries

& Customer Environment
\»"\Q\’
« Dev Production
E nt : Environ
] Ple N "

Proposed OCI media types of OPA

&t open-policy-agent / opa @Watch~ 65 | KStar | 2031 | YFork 186

Code Q@ Issues 88 Pull requests 4 Projects 1 Wiki Insights

Feedback on mediaTypes for storing OPA bundles as OCl =
images #1413

garethr opened this issue 5 hours ago - 0 comments

i garethr commented 5 hours ago 2 Assignees

No one assigned

As discussed briefly with @tsandall. Posting for visibility and to widen the discussion.

I've been hacking on https://github.com/instrumenta/conftest, which uses OPA/rego but presents an tabels
interface for local unit testing of configuration. I'll be talking at KubeCon in a few weeks about this and why None yet
| think it's useful.

Projects
One thing I've added recently is the ability to share rego files on OCl registries. Basically you can do the e e
following and download existing rules or other bits. :
conftest pull instrumenta.azurecr.ic/kubernetes-helpers Milestone

5 y . . No mileston
That spun off work | was doing with @SteveLasker (product manager for Azure Container Registry at o, miesione

Microsoft) before | left Docker. Basically better support in registries for other types of content than just
Docker images. Steve has a proposal up at: Notifications

g ; . 2 . % il
https://github.com/StevelLasker/RegistryArtifactTypes/blob/master/mediaTypes.md tx Ussibhecitbe
You're receiving notifications because
The rationale for sharing things via OCl images is described in this blog post you authored the thread.
https://stevelasker.blog/2019/01/25/cloud-native-artifact-stores-evolve-from-container-registries/. But in

short, everyone already has one (whether cloud provider, public/private, self-hosted, geo-replicated, etc.)

DT | [VRN

Using conftest to share policy

$ 1ls policy

$ conftest pull instrumenta.azurecr.io/kubernetes-helpers
$ 1ls policy

kubernetes.rego

snyk.io snyk

General helpers

package

has_field returns whether an object has a field
has field(object, field) {

object[field]
}

False is a tricky special case, as false responses would create an undefined
document unless they are explicitly tested for
has field(object, field) {
object[field] == false
}

has field(object, field) = false { snyk

Domain-specific packages
package

{

.kind = "Service"

{
.kind = "Deployment"

snyk.io

snyk

Test helpers

package

empty(value) {
count(value) == 0

¥

{
empty(deny)

}

{
empty(warn)

¥

snyk.io

snyk

Dependencies in conftest.toml

You can override the directory in which to store and look for policies
policy = "tests”

You can override the namespace which to search for rules
namespace = "conftest"

An array of individual policies to download. Only the repository
key is required. If tag is omitted then latest will be used
[[policies]]

repository = "instrumenta.azurecr.io/test"

tag = "latest"

snyk.io

snyk

Using conftest to stay updated

$ 1ls policy

$ conftest update
$ 1ls policy
kubernetes.rego

snyk.io

snyk

Portability

Helping to move between different Kubernetes tools

snyk.io snyk

Demo

snyk.io

Kustomize

$ kustomize build | conftest test -

snyk.io snyk

Helm

$ helm template | conftest test -

snyk.io snyk

Typescript

{Pod} from 'kubernetes-types/core/vl'
{ObjectMeta} from 'kubernetes-types/meta/v1l’
* as yaml from 'js-yaml'

: ObjectMeta = {name: 'example', labels: {}}

: Pod = {
apiVersion: 'vl',
kind: 'Pod',
metadata,
spec: {
containers: [
A |
1,

}s

console.log(yaml.safeDump())

snyk

Typescript

$ npx ts-node pod.ts | conftest test -

snyk.io

snyk

Kubectl (look away now)

$ kubectl get all -o json
jq -cj '.items[] | tostring+"\uoooo"'
xargs -nl -0 -I@ bash -c "echo '@' | conftest test -"

snyk.io snyk

Kubectl plugin

$ kubectl krew install conftest
$ kubectl conftest deployment some-deployment

snyk.io snyk

Cue

package kubernetes

deployment "hello-kubernetes": {
apiVersion: "apps/v1"
spec: {
replicas: 3
template spec containers: [{
image: "paulbouwer/hello-kubernetes:1.5"
ports: [{
containerPort: 8080

1]

snyk.io snyk

Cue

package kubernetes
import "encoding/yaml"

command test: {
task conftest: {

kind: "exec"
cmd: "conftest test -"
stdin: (objects)

snyk.io snyk

Cue

$ cue test
Containers must not run as root

command "conftest test -" failed: exit status 1
terminating because of errors

snyk

snyk.io

Not just Kubernetes

Lots of other configurations to care about

snyk.io

L ots of Kubernetes-like docs

apiVersion: kind: extension:yaml

Lots more YAML

in:path .yml language:YAML

Demo

snyk.io

Serverless framework

service: aws-python-scheduled-cron

frameworkVersion: ">=1.2.0 <2.0.0"

provider:
name: aws
runtime: python2.7
tags:
author: "this field is required"

functions:
cron:
handler: handler.run
runtime: python2.7
events:

- schedule: cron(@/2 * ? * MON-FRI *)

snyk.io

snyk

Serverless framework

package

deny[msg] {
.provider.runtime = "python2.7"

msg = "Python 2.7 cannot be the default provider runtime"
}
runtime[name] {
.functions[i].runtime = name
}

deny[msg] {
runtime["python2.7"]

msg = "Python 2.7 cannot be used as the runtime for functions"”
}

deny[msg] {
not has_field(.provider.tags, "author")

msg = "Should set provider tags for author”

}

snyk.io

snyk

Terraform

$ terraform plan -out config.tfplan
$ terraform show -json config.tfplan | configtest test -

snyk.io snyk

Terraform

package

blacklist = [
"google iam",
"google_container"

]

deny[msg] {
check_resources(.resource_changes, blacklist)
banned := concat(", ", blacklist)

msg = sprintf("Terraform plan will change prohibited resources in: %v", [banned])

}

Checks whether the plan will cause resources with certain prefixes to change
check_resources(resources, disallowed prefixes) {
startswith(resources[_].type, disallowed prefixes[_])

}

snyk.io snyk

Docker Compose

version: "3.4"
services:
web:
build:
ports:
- "5000:5000"
redis:
image: "redis:latest”

snyk.io snyk

Docker Compose

package
{
to_number(.version)
}
[msg] {
endswith(.services[_].image, ":latest")
msg = "No images tagged latest”
}
[msg] {
version < 3.5
msg = "Must be using at least version 3.5 of the Compose file format"
}

snyk.io snyk

Conclusions

If all you remember is...

snyk.io

Summary
Open Policy Agent is incredibly flexible

Expect lots more integrations in the future

Policy is a good starting point for conversations

Managing configuration as code needs better tools

Come talk to Snyk at booth #541

snyk.io

L

snyk.io

Questions?

And thanks for listening

snyk

