
Uber x Security

May 23, 2019

Tyler Julian, Security Engineer @Uber
Daniel Feldman, Software Engineer @Scytale

01 Overview
02 Identity at Uber
03 SPIFFE
04 Case Study
05 Q&A

Agenda

Identity at Uber
Tyler Julian

About Me

● Authentication
● Distributed Systems
● @Uber

○ Identity & Access Management
○ Trust & Safety

● @21 (acq. by Coinbase)
○ Cryptocurrency Protocol Implementation

Scale

Batch workloads daily.

xxM
Unique services.

xK+
Running containers to support
stateless services.

xxxK

Infra
● Deployments in both cloud

and on-prem data centers

● RPC with gRPC/HTTP and
in-house protocols

● Routing/discovery built
in-house

● Orchestration using Mesos,
Hadoop, and in-house tools

● Services written in Go, Java,
Python, Node.js, and more

Identity Requirements
● Compliance

○ General Data Protection Regulation (GDPR)
○ Sarbanes-Oxley (SOX)

● Trust and Security
○ Reduce assumptions on system behavior (zero trust)
○ Reduce risk of unauthorized access
○ Reduce risk of bad configuration

● Developer Experience
○ Easy to implement and use
○ Integrated with infrastructure

Humans

Riders, drivers, couriers, customer support
representatives, managers, engineers, etc.

Workloads

A process that runs application logic for some
business purpose.

Machines

Addressable hosts that reside within “Uber”
infrastructure.

Identity Scope

Workload Identity
● Goal:

○ Uniquely identify a particular program or application

● Control access to:
○ Database credentials
○ Third party API keys
○ Other internal services

● Protect data:
○ Encryption-in-transit (confidentiality and integrity)
○ Controlled access (authenticity and authorization)

SPIFFE
Daniel Feldman, Scytale

About Me

● Worked on distributed filesystems @ Veritas for ~5 years
● Then 2 years working on service auth for all services in

Veritas backup software
○ (Used at thousands of huge companies)

● Last year @ Scytale doing service auth in general

What makes a good ID?

Unique Stable

VerifiableTrusted

SPIFFE Verifiable ID Document

X.509-SVID describes
exactly how to encode
a SPIFFE ID in an
X.509 certificate

JWT-SVID describes
exactly how to encode
a SPIFFE ID in an JWT
bearer token

spiffe://acme.com/billing/payments

A SPIFFE ID

SPIFFE adoption

Accepted into the CNCF
in March 2018

Launched in December
2017

Integrated into multiple
cloud-native

open-source projects

Deployed by a growing
number of enterprises

SPIRE
● SPIRE is the reference implementation of SPIFFE
● Provides a simple API for a workload to get its own SVID
● Verifies the identity of workloads using plugins that talk to infrastructure

SPIRE Serverspiffe://acme.com/billing/payments

selector: aws:sg:sg-edcd9784
selector: k8s:ns:payments
selector: k8s:sa:pay-svc

Node

Workload

SPIRE Agent

Workload API

Workload

SPIRE

Kubernetes API

AWS API

Example: Workload in Kubernetes in AWS

SPIRE Goals
● Fully automated and policy driven. Existing identity (particularly PKI)

infrastructure requires human trust. SPIRE is fully automated and minimizes
manual key distribution.

● Minimal Knowledge. A compromised machine should only expose secrets
for workloads running on that machine.

● Reliable. The single points of failure in the system should be minimized and
the system should degrade gracefully when any SPOF is down.

● Scoped trust roots. There should be no hardcoded, global trust roots
(unlike web PKI).

Case Study
Authentication in a Microservice Architecture

Matching
Service

User
DB

Trip
Service

Payment
Service

Early: Service to DB (Direct Data Access)

Matching
Service

User
DB

Trip
Service

Payment
Service

Early: Service to DB (Direct Data Access)

user/pass

user/pass

user/pass

Matching
Service

Trip
Service

Payment
Service

User
Gateway

User
DB

Foo-N
Service

...

Growth: Service to Gateway (Proxied Data Access)

Matching
Service

Trip
Service

Payment
Service

User
Gateway

User
DB

Foo-N
Service

...

Growth: Service to Gateway (Proxied Data Access)

“matching-
service”

“trip-
service”

“payment-
service”

“foo-n-
service”

Matching
Service

Trip
Service

Payment
Service

User
Gateway

User
DB

Foo-N
Service

...

Late: Service to Gateway (Migration)

“matching-
service”

“trip-
service”

“payment-
service”

“foo-n-
service”

User
Gateway

Matching
Service

Trip
Service

Payment
Service

User
Gateway

User
DB

Foo-N
Service

...

Late: Service to Gateway (Migration)

“matching-
service”

“trip-
service”

“payment-
service”

“foo-n-
service”

User
Gateway

Matching
Service

Trip
Service

Payment
Service

User
Gateway

User
DB

Foo-N
Service

...

Late: Service to Gateway (Migration)

“matching-
service”

“trip-
service”

“payment-
service”

“payment-
service”

User
Gateway

???

Matching
Service

Trip
Service

Payment
Service

User
DB

Foo-N
Service

...

Late: Service to Gateway (Migration)

“matching-
service”

“trip-
service”

“payment-
service”

“foo-n-
service”

User
Gateway��

��

��

��

Implementation
● Libraries

○ Cross-language compatibility is hard
○ Breaking changes are nearly impossible
○ Maintenance burden

● Sidecar proxy
○ Language-agnostic
○ Encapsulated from application logic
○ Breaking changes are possible!

Sidecar Proxy

Matching
Service

User
Gateway

“matching-
service” ✅

Sidecar Proxy

Sidecar Proxy

Matching
Service

User
Gateway

Sidecar Proxy

Sidecar Proxy

Matching
Service

User
Gateway

“matching-
service”

��

Sidecar Proxy

Sidecar Proxy

Matching
Service

User
Gateway

“matching-
service”

�� ???

Sidecar ProxySidecar Proxy

Sidecar Proxy

Matching
Service

User
Gateway

“matching-
service”

��

Sidecar ProxySidecar Proxy

Sidecar Proxy

Matching
Service

User
Gateway

“matching-
service”

��
✅

Q&A

