Uber x Security

Tyler Julian, Security Engineer @Uber
Daniel Feldman, Software Engineer @Scytale

May 23, 2019

Uber

Agenda

01 Overview

02 Identity at Uber
03 SPIFFE

04 Case Study

05 Q&A

Identity at Uber

Tyler Julian

About Me

e Authentication
Distributed Systems
o @Uber
o ldentity & Access Management
o Trust & Safety
e @21 (acq. by Coinbase)
o Cryptocurrency Protocol Implementation

Scale

3K+ 400K M

Unique services. Running containers to support a
stateless services.

Infra

e Deployments in both cloud
and on-prem data centers

e RPC with gRPC/HTTP and
in-house protocols

e

-
e

Z

\
\

5

P

\
\
\
\
\

e Routing/discovery built
in-house

e (Orchestration using Mesos,
Hadoop, and in-house tools

e Services written in Go, Java,
Python, Node.|s, and more

Identity Requirements

e Compliance
o (General Data Protection Regulation (GDPR)
o Sarbanes-Oxley (SOX)

e T[rust and Security
o Reduce assumptions on system behavior (zero trust)
o Reduce risk of data breach
o Reduce risk of bad configuration

e Developer Experience
o Easy to implement and use
o Integrated with infrastructure

Identity Scope

if the num
{2t th

a prime, "

// end of communicate function

Users Machines Workloads

Riders, drivers, couriers, customer support Addressable hosts that reside within “Uber” A process that runs application logic for some
representatives, managers, engineers, etc. infrastructure. business purpose.

Workload Identity

o (Goal:
o Uniquely identify a particular program or application

e (Control access to:
o Database credentials
o Third party APl keys
o Other internal services

e Protect data:
o Encryption-in-transit
o Prevent bad actors

SPIFFE

Daniel Feldman

placeholder

Need slides for:

Intro to SPIFFE (framework for identifying workloads)
What is an SVID?

Workload API

How to actually use Workload API (Proxy?)-- brief
Selectors (Daniel make this slide)

j ?
What is an SVID*%
HELLO {AWASHINGTON omven License
my name is =;, S :i1SAMI§£\éVIPLJA1é\5§0 gmssoouow

L 2JOHNA

08 01706/1958) \ \ 01/‘/06/201 5
23 STREET: ADDRESS
4 RCUCI WA 99999-0000 =

EX\M 8 EYESDIC
HGT 5’-08 17 WGT 165 1b
STRIC a ENDNONE
NONE 08/12/;020
1 Veteran
REV 01/06/2015

Identity documents are:

Unique Stable Verifiable
Attested by a trusted authority

SSSSSSS

- spiffe
and

A SPIRE

spiffe

github.com/spiffe/spiffe

SPIRE

github.com/spiffe/spire

i

A set of specifications that cover how a workload
should retrieve and use it’s identity.

e SPIFFEID
e SPIFFE Verifiable Identity Documents (SVIDs)
e The SPIFFE Workload API

The SPIFFE Runtime Environment. Open-source
software that implements the SPIFFE Workload API for
a variety of platforms.

Apache 2.0 license. Independent governance. Highly
extensible through plug-ins.

SSSSSSS

Workload authentication ae

?

1. Retrieve
username and
password from 3. Verify
configuration 2. Supply username and password* username
_ with authentication handshake and
password
Web Front End Subscriptions
4. ACkﬂOWledge ACCOU nts
Source workload Destination
workload ?
?

* Or key/secret, signed nonce etc.

Platform mediated identity

Eg. AWS IAM, Kubernetes Service Accounts

Destination
Source workload 2. Send proof of identity with workload
authentication handshake

Web Front End Subscriptions

4. Acknowledge
1. Retrieve 3. Verify source
proof-of-identity from workload
the platform identity

Privileged API Privileged API

SCYTALE

What is an SVID?

A SPIFFE ID

spiffe://

_

X.509-SVID describes
exactly how to encode
a SPIFFE ID in an
X.509 certificate

/billing/payments

SEJWT

JWT-SVID describes
exactly how to encode
a SPIFFE ID in an JWT
bearer token

4 ™
Node
Workload Workload

NES NE

Yorkload AR spiffe://acme.com/billing/payments
SPIRE Agent
\\~ *\ 4// selector: aws:sg:sg-edcd9784
(. selector: k8s:ns:payments
SPIRE Server selector: k8s:sa:pay-svc

////”selector: docker:image—-1d:442ca?d

&5

Design Goals

Application identity driven. By building a security model rooted in a strong assertion of
application identity, policies and practices become application- and business unit- oriented
rather than infrastructure-oriented.

Easily adoptable. Users should be able to leverage Emissary with little or no code change.
The system should work well in dynamically orchestrated containerized environments.

Federatable. It should be possible to use these identity mechanisms across business units
and even organizations.

Reliable. The single points of failures in the system should be minimized and the system
should degrade gracefully when any single point of failure is down.

Cloud and Container Ready. It should be possible to safely extend trust to entities running
on to third party cloud providers such as Amazon Web Services and Microsoft Azure, and
container orchestrators such as Cloud Foundry and Kubernetes.

SecurityGoals = o

e Fully automated and policy driven. Existing identity (particularly PKI)
infrastructure is both complex and often requires “human trust”, which
weakens delivery. Emissary is fully automated and should minimize manual
key distribution.

e Minimal Knowledge. A compromised machine should only expose any
secrets for workloads that happen to be running on that machine.

e Reliable. The single points of failures in the system should be minimized
and the system should degrade gracefully when any SPOF is down. All
“steady state” operations shouldn’t have requirements off of a specific node.

e Scoped trust roots. There should be no hardcoded, global trust roots as we
see in the web browser world.

V Vault NGiNX &Jenvoy

Bootstrap deployment for

Secret Secure authentication amongst services Identity for service mesh
distributed systems

KR RO

SPIFFE Verifiable Identity Documents (SVIDs)

SPIFFE Workload API

RA SPIRE

Axmd
Proxy

HSM, TPM, Kerberos CA and secret

OS attestation Scheduler and PaaS
attestation plug-ins store plug-ins

Cloud platform
plug-ins attestation plug-ins

attestation plug-ins

Case Study

Authentication in a Microservice Architecture

Early: Service to DB (Direct Data Access)

Matching
Service

Trip
Service

Payment
Service

Early: Service to DB (Direct Data Access)

Matching T~
Service user/pass

/_/
/_\/

user/pass

/_/

/—\J
Payment user/pass

Service T~

Growth: Service to Gateway (Proxied Data Access)

Matching
Service

Trip
Service
User

Gateway

Payment
Service

Foo-N
Service

Growth: Service to Gateway (Proxied Data Access)

Matching
Service

“matching-
service”

“trip-
service”

/_\/
Payment “payment-

Service S

“foo-n-
service”

Foo-N
Service

Late: Service to Gateway (Migration)

Matching
Service

User

“matching- Service v2

service”

“trip-

service”
User
/—\/ :
Payment “payment- Service
service”

Service

“foo-n-
service”

Foo-N
Service

Late: Service to Gateway (Migration)

1 /—\/
Matching “matching-
Service service”

User
Service v2

“trip-
service”

“payment- User
service” Service

“foo-n-
service”

Payment
Service

Foo-N
Service

Late: Service to Gateway (Migration)

Matching /—mm/

Service service”

“trip-
service”

“payment-
service”

Payment
Service

“payment-
service”

Foo-N
Service

User
Service v2

User
Service

Late: Service to Gateway (Migration)

Matching “matching-
Service service”

User
Service v2

“trip-
service”

“payment-
service”

“foo-n-
service”

Payment
Service

Foo-N
Service

Implementation

e Talk about libraries/sidecars, benefits of encapsulating from
application logic, mTLS and JWTs

Q&A

CloudNativeCon

KubeCon

North America 2018

CloudNativeCon

KubeCon

North America 2018

BACKUP SLIDES o E

North America 2018

Identity is the basis for AuthN and AuthZ

Directory of
Entitlements

SPIRE

NOT SPIFFE and

Who am I?
(And how can | prove it)?

Who is this workload? Should |
trust it is who it says it is?

Workload identity? Use the network?

7 Network overlays :

Orchestrator }

S St = = o \

® 0 O

I ! I

| [N T | Firewall ,|
On-prem

40/40

Workload identity? Shared secrets?

.‘Y!\\ __________

Cloud Vendo

ZXX ¢o 00
s ~ owprem

41/40

Workload identity? Ask my platform?

Cloud Vendor
20>
N\ o ¥
R \e®

4[Paa$S]7 —[On-prem

42/40

SPIFFE: Federated, platform-mediated, vendor neutral identity

Cloud Vendor N Orchestrator —

43/40

SPIFFE: Federated, platform-mediated, vendor neutral identity

Cloud Vendor

Federation

Workload API

44/40

SPIFFE Issuers

F‘ F\’ SPIRE
(Full implementation)

G{: HashiCorp Consul Connect
Gonsul (Partial implementation)

\ Istio Citadel
‘ (Partial implementation)
~

SPIFFE Consumers

A4

o
Jidl
N
B
?

45/40

HashiCorp Vault
Secret store

Knox
Secret store

Ghostunnel
Proxy

nginx
Web server and proxy

Envoy
Proxy

Your code
Using libraries

Today

A short history of SPIFFE

What SPIFFE solves for

SVIDs, Workload API and Federation
How to use SPIFFE

What's Next?

46/40

What is an SVID?

HELLIO

WWASHINGTON DRIVER LICENSE

:— 4aLiceSAMPLJA18580 scLass . DONOR A 2
1
i j 3D0B 1/06/2015
= S
f —
o 1 18 E \ ¢
1 - 17 3
12 RESTRICTIONS 9a E N
NONE Exp
> =EE]
A ¢ 0 5DD SAMPLJA185801234567XX1101 ‘'eteran
EV 01/06/2015

Identity documents are:

Unique Static Verifiable
Attested by a trusted authority

47/40

What is an SVID?

A SPIFFE
ID

spiffe:// /billing/payments

_

X.509-SVID describes
exactly how to encode
a SPIFFE ID in an
X.509 certificate

48/40

SEJWT

JWT-SVID describes
exactly how to encode
a SPIFFE ID in an JWT
bearer token

SPIFFE Verifiable Identity Document

AN

- [abichemen

SPIFFE
Verifiable Identity Document Trust Bundle
(SVID)

49/40

SPIFFE Verifiable Identity Document

SPIFFE
Verifiable Identity Document Trust Bundle
(SVID)

spiffe://acme.com/billing/payments

50/40

SPIFFE Verifiable Identity Document

= —
(TIT T
e Certificate of s I r, (,~ ; ' ,\(

SVID comes from the SPIFFE
implementation, not from the

workload itself

(SVID)

51/40

SPIFFE Verifiable Identity Document

' ~ Certificate of
?@’Ebwh
chiebermeny
R &

g R

SPIFFE
Verifiable Identity Document Trust Bundle
(SVID)

52/40

SPIFFE Workload API

53/40

Trust Domain Trust Domain

Workload J Workload

f i

SPIFFE }‘ »L SPIFFE

54/40

Today

A short history of SPIFFE

What SPIFFE solves for

SVIDs, Workload API and Federation
How to use SPIFFE

What's Next?

55/40

How do | get an SVID?

My Code [

My Code J

call workload api

[SPIFFE Implementation J

56/40

How do | get an SVID?

My Code [

My Code J

call workload api

[SPIFFE Implementation J

57/40

How do | get an SVID?

My Code [o J
Library A
Proxy =
— || L éVID
spiffe-helper .
S ervi ce MESh [SPIFFE Implementation J

58/40

How do | get an SVID?

My Code

c-spiffe

@®c++ %2 Updatedon Apr10

Library

Proxy

spiffe-helper

Service Mesh

go-spiffe
Golang library to parse and verify SVIDs

@®co %19 ¥5 UpdatedonSep7 2017

java-spiffe

@Jlava K7 ? 2 515 Apache-2.0 Updated 9 days ago

59/40

How do | get an SVID?

c-spiffe

My Code

@®c++ ¥2 UpdatedonApr10

H go-spiffe
L I b ra ry Golang library to parse and verify SVIDs
@®co %19 ¥5 UpdatedonSep7 2017
Proxy o
java-spiffe

<connection-property name="url">
jdbc:postgresql://backend:8443/tasks_service?socketFactory=8piffe.provider.SpiffeSocketFactory

</connection-property>
<CI VIUCU 171COl1

60/40

How do | get an SVID?

Proxy ﬂ [Client

[SPIFFE Implementation J

61/40

How do | get an SVID?

Proxy

[Client

[SPIFFE Implementation J

62/40

How do | get an SVID?

Proxy

[Client

[SPIFFE Implementation J

63/40

How do | get an SVID?

e [am

[spiffe-helper J

spiffe-helper

[SPIFFE Implementation J

64/40

The Big ldea:
e TLS works really well for encryption

e The problem is creating, managing,
and rotating certificates at scale

e \We can come up with a standard way
to do it automatically

How to do It:
e Restricted form of X.509 certificates:
o Only certain fields allowed
o SPIFFE ID in the “SAN” field
o DN field is not used
e \Workload API for services to retrieve
their own certificate

Implementations:

SPIFFE IDs

spiffe://acme.com/workload/workload1

Trust Workload ID
Domain

SPIFFE IDs

spiffe://acme.com/workload/workload1

Trust Workload ID
Domain

Stored inside the X.509 certificate

Selectors
e \What workload am [?
o Comes from the platform, not the
workload itself
o “Attestation”
e The mappings from platform properties
to SPIFFE IDs are selectors

==

salesforce
Mobile API Web Front End { POS API .
ngENSHIFT' CLOUD FET)}UNDRY

== Microsoft @ tWIlIO

Azure

\ ‘-.’ \\

.
“rifamazon —1
% Subscriptions
& kubernetes O ' SendGrid
\\ _/ \\/\ AN

&) kubernetes
L/
- e
embpers
; g’ﬁ ZUorQ

Model 1: Destination workload authentication*

?

1. Retrieve
username and
password from 3. Verify
configuration 2. Supply username and password® username
with authentication handshake and
password
Web Front End Subscriptions
>

4. Acknowledge

Destination
workload

Source workload

* Or key/secret, signed nonce etc.

Model 2: Platform mediated identity

Eg. AWS IAM, Kubernetes Service Accounts

Destination
Source workload 2. Send proof of identity with workload
authentication handshake

-
Web Front End < Subscriptions

4. Acknowledge

1. Retrieve 3. Verify source
proof-of-identity from workload
the platform identity

Platform (eg. AWS, or Kubernetes)

S

SCYTALE

API-driven credential
rotation and
distribution

One identity per
workload

No credentials need
to be deployed with
the workload

Supports trust across
different platforms
platforms

Destination
workload
authentication

No

No

No

Platform mediated
identity

No

SCYTALE

The Inspiration for SPIFFE and SPIRE

Google facebook NETFLIX

Google Application Layer Transport
Security

“Secure authentication and authorization “During the startup, access to the
“The ALTS trust model has been tailored within Facebook’s infrastructure play long-lived credentials and short-lived
for cloud-like containerized important roles in protecting people using credentials are provisioned to each
applications. Identities are bound to Facebook’s services. Enforcing security while instance.
entities instead of to a specific server maintaining a flexible and performant
name or host. This trust model infrastructure can be challenging at This credential bootstrap is done by
facilitates seamless microservice Facebook’s scale, especially in the presence of Metatron, which is a tool at Netflix,
replication, load balancing, and varying layers of trust among our servers.” which does credential management.”

rescheduling across hosts.”

https://cloud.google.com/security/encryption-in-transit/application-layer-transport-security/#alts_trust_model

— spiffe

and

FA SPIRE

SSSSSSS

spiffe

github.com/spiffe/spiffe

FA SPIRE

github.com/spiffe/spire

A set of specifications that cover how a workload should
retrieve and use it’s identity.

e SPIFFEID
e SPIFFE Verifiable Identity Documents (SVIDs)
e The SPIFFE Workload API

The SPIFFE Runtime Environment. Open-source software
that implements the SPIFFE Workload API for a variety of
platforms.

Apache 2.0 license. Independent governance. Highly
extensible through plug-ins.

SSSSSSS

SPIFFE ID

spiffe;//acme.com/billing/payments

Trust Domain Workload Identifier

SPIFFE Verifiable ldentity Document

spiffe;//acme.com/billing/payments

Typically short-lived -E

Today only one form of SVID (X509-SVID).
Other document types under consideration
(including JWT-SVID)

SPIFFE Workload AP

-

_

Workload

whoami()

Server

Workload

whoami()

Workload API

~

SSSSSSS

SSSSSSS

()

() (%)
5
280

()

SPIRE Server SPIRE Server

FA SPIRE

A cross-platform implementation of the SPIFFE specifications

SPIRE Agent

r

Workload Workload

NE | NS

_

Node \

Workload API

n I/

S

s

SCYTALE

spiffe://acme.com/billing/payments
selector: aws:sg:sg-edcd9784
selector: k8s:ns:payments

selector: k8s:sa:pay-svc
selector: docker:image-id:442ca?f

)

Design Goals of SPIFFE and SPIRE

Application identity driven. By building a security model rooted in a strong assertion of
application identity, policies and practices become application- and business unit- oriented
rather than infrastructure-oriented.

Easily adoptable. Users should be able to leverage Emissary with little or no code change.
The system should work well in dynamically orchestrated containerized environments.

Federatable. It should be possible to use these identity mechanisms across business units
and even organizations.

Reliable. The single points of failures in the system should be minimized and the system
should degrade gracefully when any single point of failure is down.

Cloud and Container Ready. It should be possible to safely extend trust to entities running
on to third party cloud providers such as Amazon Web Services and Microsoft Azure, and
container orchestrators such as Cloud Foundry and Kubernetes.

Security Goals of SPIFFE and SPIRE

Fully automated and policy driven. Existing identity (particularly PKI)
infrastructure is both complex and often requires “human trust”, which weakens
delivery. Emissary is fully automated and should minimize manual key
distribution.

Minimal Knowledge. A compromised machine should only expose any secrets
for workloads that happen to be running on that machine.

Reliable. The single points of failures in the system should be minimized and

the system should degrade gracefully when any SPOF is down. All “steady state”

operations shouldn’t have requirements off of a specific node.

Scoped trust roots. There should be no hardcoded, global trust roots as we see
in the web browser world.

SSSSSSS

V Vault NGiNX &Jenvoy

Bootstrap deployment for

Secret Secure authentication amongst services Identity for service mesh
distributed systems

KR RO

SPIFFE Verifiable Identity Documents (SVIDs)

SPIFFE Workload API

RA SPIRE

Axmd
Proxy

HSM, TPM, Kerberos CA and secret

OS attestation Scheduler and PaaS
attestation plug-ins store plug-ins

Cloud platform
plug-ins attestation plug-ins

attestation plug-ins

SSSSSSS

Use cases

How the identity plane becomes
the unifying layer for
Infrastructure

SSSSSSS

Improving security posture

Minimize key leaks with secure introduction
== Active Directory apigee

v HashiCorp
connection

Secret Store
APl Service il > or

|dentity Broker
Identify
workload Distribute trust
bundles
SPIRE Agent
| |
b oo o oo oo oo oo s e o - = = e e = e = e = = J

€g. Vault, Apr

\ ! GCITeWay' AD
A SPIRE FSete

Enforce and verify release pipelines

Cl/CD Pipeline

Artifact Built

Artifact Signed

Billing
Service

*

SPIRE Agent

Passes attestation, is
issued identity

 [ofary

The Update Framework

Artifact Built

Billing
Service

SPIRE Agent

* Fails attestation, is
issued identity

spiffe://acme.com/billing
. runs as user ‘billing-svc’
. in the AWS security group sg-5¢c24f185”, and
° runs in a docker image that been signed
by our build system’s private key.

Authenticate developer access (BeyondCorp) -

Jan’s Laptop Remote Node
spiffe://acme.com/developers
/janc/macbook4

-

spiffe://acme.com/developers/janc/macbook4
Has authenticated as Idap user janc
Has authenticated with the YubiKey
associated with macbook4

SSSSSSS

Improving developer efficiency

Simplity workload AuthN and AuthZ with =~

Service Mesh NGINX @@emy

Simplify workload AuthN and AuthZ with =~
Service Mesh NGINX & envoy

Verify workload i
| |

s

Improving post-incident forensics with
unified telemetry

U
/ Tracing Collector (eg. Jaeger) ‘?"ﬂ‘ J A E G E R
Trace Lib

Billing Service G F |
T Log Collector (eg. Fluentd) f | ue nt d
SPIRE Agent

Metrics Agent \
* Metrics Collector (eg. Prometheus) \!- Prometheus
I w

R4 SPIRE

The |dentity Plane becomes the unifying layer for
Infrastructure

Service Mesh Secure Introduction Unified telemetry Enforcement of
Software Supply
Chain
. Prometheus
Envoy, LinkerD, Vault, Confidant, TUF, Notary,
. Grafana
nginx, gRPC Knox Grafeas
Jaeger
SPIFFE (API)

Identity Plane (SPIRE)

SCYTALE

SPIFFE Runtime Environment

&5

SPIRE Server/

/

spiffe://acme.com/billing/payments
selector: aws:sg:sg-edcd9784

selector: k8s:ns:payments
selector: k8s:sa:pay-svc

- selector: docker:image-id:442ca9

)

SSSSSSS

SPIFFE Runtime Environment

&5

SPIRE Server/

/

spiffe://acme.com/billing/payments
selector: aws:sg:sg-edcd9784

selector: k8s:ns:payments
selector: k8s:sa:pay-svc

- selector: docker:image-id:442ca9

)

SSSSSSS

S

SCYTALE

Node attestation

/ EC2 Instance \
1. Node agent authenticates to the SPIRE

Server, passes AWS Instance Identity
Document

U ewse
) B

g)

Workload API

|dV e1EpEISIN
adueIsu| SMY

Node attestation

_

Container

Workload API

Kubelet

/ EC2 Instance \

2. List of valid SPIFFE IDs for the node, and

selectors, returned

-

/

O mesee

SSSSSSS

Workload attestation kS

/ EC2 Instance \

<€

3. Workload requests identity

4. Node agent performs an out-of-band
check of the workload process metadata,

whoami() compares to known selectors

Workload API

f_\

| " -

Kubelet &

_

_

SVID Bundle Issuance

_

Container

Workload API

Kubelet

/ EC2 Instance \

S

SCYTALE

5. 1f match found, NA generates a key for the
workload

6. NA sends certificate signing request
based on that key to SPIRE Server

/

U ewse
B

g)

SVID Bundle Issuance

_

Container

Workload API

Kubelet

/ EC2 Instance \

/

S

SCYTALE

6. SPIRE server issues SVID (as well as
certificates for any other workload the
instance should support)

SVID Bundle Issuance

/ EC2 Instance

NED |

Workload API

Kubelet

_

~

/

7. Certificate bundle returned to the
workload

SSSSSSS

