
Uber x Security

May 23, 2019

Tyler Julian, Security Engineer @Uber
Daniel Feldman, Software Engineer @Scytale

01 Overview
02 Identity at Uber
03 SPIFFE
04 Case Study
05 Q&A

Agenda

Identity at Uber
Tyler Julian

About Me
● Authentication
● Distributed Systems
● @Uber

○ Identity & Access Management
○ Trust & Safety

● @21 (acq. by Coinbase)
○ Cryptocurrency Protocol Implementation

Scale

a

M
Unique services.

3K+
Running containers to support
stateless services.

400K

Infra
● Deployments in both cloud

and on-prem data centers

● RPC with gRPC/HTTP and
in-house protocols

● Routing/discovery built
in-house

● Orchestration using Mesos,
Hadoop, and in-house tools

● Services written in Go, Java,
Python, Node.js, and more

Identity Requirements
● Compliance

○ General Data Protection Regulation (GDPR)
○ Sarbanes-Oxley (SOX)

● Trust and Security
○ Reduce assumptions on system behavior (zero trust)
○ Reduce risk of data breach
○ Reduce risk of bad configuration

● Developer Experience
○ Easy to implement and use
○ Integrated with infrastructure

Users

Riders, drivers, couriers, customer support
representatives, managers, engineers, etc.

Workloads

A process that runs application logic for some
business purpose.

Machines

Addressable hosts that reside within “Uber”
infrastructure.

Identity Scope

Workload Identity
● Goal:

○ Uniquely identify a particular program or application

● Control access to:
○ Database credentials
○ Third party API keys
○ Other internal services

● Protect data:
○ Encryption-in-transit
○ Prevent bad actors

SPIFFE
Daniel Feldman

placeholder
Need slides for:

● Intro to SPIFFE (framework for identifying workloads)
● What is an SVID?
● Workload API
● How to actually use Workload API (Proxy?)-- brief
● Selectors (Daniel make this slide)

What is an SVID?

Identity documents are:

Unique Stable Verifiable

Attested by a trusted authority

and

A set of specifications that cover how a workload
should retrieve and use it’s identity.

● SPIFFE ID
● SPIFFE Verifiable Identity Documents (SVIDs)
● The SPIFFE Workload API

The SPIFFE Runtime Environment. Open-source
software that implements the SPIFFE Workload API for
a variety of platforms.

Apache 2.0 license. Independent governance. Highly
extensible through plug-ins.

github.com/spiffe/spiffe

github.com/spiffe/spire

Web Front End Subscriptions

4. Acknowledge

* Or key/secret, signed nonce etc.

2. Supply username and password*
with authentication handshake

Accounts

1. Retrieve
username and
password from
configuration

Workload authentication

3. Verify
username

and
password

?

?

Source workload Destination
 workload

Platform mediated identity

Web Front End Subscriptions

4. Acknowledge

2. Send proof of identity with
authentication handshake

1. Retrieve
proof-of-identity from

the platform

3. Verify source
workload
identity

Platform (eg. AWS, or Kubernetes)

Eg. AWS IAM, Kubernetes Service Accounts

Privileged API Privileged API

Source workload
Destination
 workload

What is an SVID?

X.509-SVID describes
exactly how to encode
a SPIFFE ID in an
X.509 certificate

JWT-SVID describes
exactly how to encode
a SPIFFE ID in an JWT
bearer token

spiffe://acme.com/billing/payments

A SPIFFE ID

SPIRE Server

spiffe://acme.com/billing/payments

selector: aws:sg:sg-edcd9784

selector: k8s:ns:payments
selector: k8s:sa:pay-svc
selector: docker:image-id:442ca9

Node

Workload

SPIRE Agent

Workload API

Workload

Design Goals
● Application identity driven. By building a security model rooted in a strong assertion of

application identity, policies and practices become application- and business unit- oriented
rather than infrastructure-oriented.

● Easily adoptable. Users should be able to leverage Emissary with little or no code change.
The system should work well in dynamically orchestrated containerized environments.

● Federatable. It should be possible to use these identity mechanisms across business units
and even organizations.

● Reliable. The single points of failures in the system should be minimized and the system
should degrade gracefully when any single point of failure is down.

● Cloud and Container Ready. It should be possible to safely extend trust to entities running
on to third party cloud providers such as Amazon Web Services and Microsoft Azure, and
container orchestrators such as Cloud Foundry and Kubernetes.

Security Goals
● Fully automated and policy driven. Existing identity (particularly PKI)

infrastructure is both complex and often requires “human trust”, which
weakens delivery. Emissary is fully automated and should minimize manual
key distribution.

● Minimal Knowledge. A compromised machine should only expose any
secrets for workloads that happen to be running on that machine.

● Reliable. The single points of failures in the system should be minimized
and the system should degrade gracefully when any SPOF is down. All
“steady state” operations shouldn’t have requirements off of a specific node.

● Scoped trust roots. There should be no hardcoded, global trust roots as we
see in the web browser world.

SPIFFE Workload API

Secure authentication amongst services

mTLS JWT

Identity for service mesh Bootstrap deployment for
distributed systems

gRPC

Secret
Stores

Proxy Pr
ox

y

SPIFFE Verifiable Identity Documents (SVIDs)

Cloud platform
attestation plug-ins

OS attestation
plug-ins

Scheduler and PaaS
attestation plug-ins

HSM, TPM, Kerberos
attestation plug-ins

CA and secret
store plug-ins

Case Study
Authentication in a Microservice Architecture

Matching
Service

User
DB

Trip
Service

Payment
Service

Early: Service to DB (Direct Data Access)

Matching
Service

User
DB

Trip
Service

Payment
Service

Early: Service to DB (Direct Data Access)

user/pass

user/pass

user/pass

Matching
Service

Trip
Service

Payment
Service

User
Gateway

User
DB

Foo-N
Service

...

Growth: Service to Gateway (Proxied Data Access)

Matching
Service

Trip
Service

Payment
Service

User
Service

User
DB

Foo-N
Service

...

Growth: Service to Gateway (Proxied Data Access)

“matching-
service”

“trip-
service”

“payment-
service”

“foo-n-
service”

Matching
Service

Trip
Service

Payment
Service

User
Service

User
DB

Foo-N
Service

...

Late: Service to Gateway (Migration)

“matching-
service”

“trip-
service”

“payment-
service”

“foo-n-
service”

User
Service v2

Matching
Service

Trip
Service

Payment
Service

User
Service

User
DB

Foo-N
Service

...

Late: Service to Gateway (Migration)

“matching-
service”

“trip-
service”

“payment-
service”

“foo-n-
service”

User
Service v2

Matching
Service

Trip
Service

Payment
Service

User
Service

User
DB

Foo-N
Service

...

Late: Service to Gateway (Migration)

“matching-
service”

“trip-
service”

“payment-
service”

“payment-
service”

User
Service v2

???

Matching
Service

Trip
Service

Payment
Service

User
DB

Foo-N
Service

...

Late: Service to Gateway (Migration)

“matching-
service”

“trip-
service”

“payment-
service”

“foo-n-
service”

User
Service v2��

��

��

��

Implementation
● Talk about libraries/sidecars, benefits of encapsulating from

application logic, mTLS and JWTs

Q&A

BACKUP SLIDES

Identity is the basis for AuthN and AuthZ

TLS

JWT

TLS

JWT
Source DestinationAuthZ

Directory of
Entitlements

N
OT

 S
PI

FF
E

an
d

SP
IR

E

SPIFFE

Who am I?
(And how can I prove it)?

Who is this workload? Should I
trust it is who it says it is?

Workload identity? Use the network?

Cloud Vendor

PaaS On-prem

Orchestrator

40/40

Firewall

VPN/VPC

Security Group

Network overlays

Workload identity? Shared secrets?

Cloud Vendor

PaaS On-prem

Orchestrator
eg. Username & password

eg. API Key

41/40

Workload identity? Ask my platform?

Cloud Vendor

PaaS On-prem

Orchestrator

42/40

eg. IAM Identitie
s

eg. Application IDs

eg. Kerberos Keytabs

eg. Service accounts

Cloud Vendor Orchestrator

PaaS On-prem

SPIFFE: Federated, platform-mediated, vendor neutral identity

43/40

Cloud Vendor Cont. Orchst.

PaaS On-prem

Federation

SVID

44/40

Workload API

SPIFFE: Federated, platform-mediated, vendor neutral identity

SPIFFE Issuers SPIFFE Consumers

SPIRE
(Full implementation)

HashiCorp Consul Connect
(Partial implementation)

Istio Citadel
(Partial implementation)

HashiCorp Vault
Secret store

Knox
Secret store

nginx
Web server and proxy

Ghostunnel
Proxy

Envoy
Proxy

Your code
Using libraries?

45/40

Today

46/40

A short history of SPIFFE

What SPIFFE solves for

SVIDs, Workload API and Federation

How to use SPIFFE

What’s Next?

What is an SVID?

Identity documents are:

47/40

Unique Static Verifiable

Attested by a trusted authority

What is an SVID?

X.509-SVID describes
exactly how to encode
a SPIFFE ID in an
X.509 certificate

JWT-SVID describes
exactly how to encode
a SPIFFE ID in an JWT
bearer token

spiffe://acme.com/billing/payments

48/40

A SPIFFE
ID

SPIFFE Verifiable Identity Document

SPIFFE
Verifiable Identity Document

(SVID)
Trust Bundle

49/40

SPIFFE Verifiable Identity Document

SPIFFE
Verifiable Identity Document

(SVID)
Trust Bundle

spiffe://acme.com/billing/payments
50/40

SPIFFE Verifiable Identity Document

SPIFFE
Verifiable Identity Document

(SVID)
Trust Bundle

 SVID comes from the SPIFFE
 implementation, not from the
 workload itself

51/40

SPIFFE Verifiable Identity Document

SPIFFE
Verifiable Identity Document

(SVID)
Trust Bundle

52/40

Server

Workload

Workload API

Workload

whoami()

SPIFFE Workload API

whoami()

53/40

Trust Domain

SPIFFE Federation API

54/40

Trust Domain

Workload

SPIFFE

Workload

SPIFFE

Today

55/40

A short history of SPIFFE

What SPIFFE solves for

SVIDs, Workload API and Federation

How to use SPIFFE

What’s Next?

How do I get an SVID?

My Code

Proxy

Library

Service Mesh

spiffe-helper

My Code

SPIFFE Implementation

call workload api

56/40

How do I get an SVID?

My Code

Proxy

Library

Service Mesh

spiffe-helper

My Code

SPIFFE Implementation

call workload api

57/40

How do I get an SVID?

My Code

Proxy

spiffe-helper

Service Mesh

Library
My Code

SPIFFE Implementation

SVID Trust Bundle

58/40

How do I get an SVID?

Library

Proxy

spiffe-helper

Service Mesh

My Code

59/40

How do I get an SVID?

Library

Proxy

spiffe-helper

Service Mesh

My Code

60/40

How do I get an SVID?

Proxy

Library

spiffe-helper

Service Mesh

My Code

SPIFFE Implementation

My code

Client

61/40

How do I get an SVID?

Proxy

Library

spiffe-helper

Service Mesh

My Code

SPIFFE Implementation

My code

Client

62/40

How do I get an SVID?

Proxy

Library

spiffe-helper

Service Mesh

My Code

SPIFFE Implementation

My code

Client

63/40

How do I get an SVID?

spiffe-helper

Library

Proxy

Service Mesh

My Code

SPIFFE Implementation

My code Client

spiffe-helper

64/40

The Big Idea:
● TLS works really well for encryption

● The problem is creating, managing,
and rotating certificates at scale

● We can come up with a standard way
to do it automatically

How to do it:
● Restricted form of X.509 certificates:

○ Only certain fields allowed
○ SPIFFE ID in the “SAN” field
○ DN field is not used

● Workload API for services to retrieve
their own certificate

Implementations:

SPIFFE IDs

 spiffe://acme.com/workload/workload1
Trust
Domain

Workload ID

SPIFFE IDs

 spiffe://acme.com/workload/workload1

Stored inside the X.509 certificate

Trust
Domain

Workload ID

Selectors
● What workload am I?

○ Comes from the platform, not the
workload itself

○ “Attestation”
● The mappings from platform properties

to SPIFFE IDs are selectors

Mobile API Web Front End POS API

TicketsSubscriptions

Billing
Members DB

Web Front End Subscriptions

4. Acknowledge

* Or key/secret, signed nonce etc.

2. Supply username and password*
with authentication handshake

Accounts

1. Retrieve
username and
password from
configuration

Model 1: Destination workload authentication

3. Verify
username

and
password

?

?

Source workload Destination
 workload

Model 2: Platform mediated identity

Web Front End Subscriptions

4. Acknowledge

2. Send proof of identity with
authentication handshake

1. Retrieve
proof-of-identity from

the platform

3. Verify source
workload
identity

Platform (eg. AWS, or Kubernetes)

Eg. AWS IAM, Kubernetes Service Accounts

Privileged API Privileged API

Source workload
Destination
 workload

Destination
workload

authentication

Platform mediated
identity SPIFFE

API-driven credential
rotation and
distribution

No Yes Yes

One identity per
workload No Yes Yes

No credentials need
to be deployed with
the workload

No Yes Yes

Supports trust across
different platforms
platforms

Yes No Yes

The Inspiration for SPIFFE and SPIRE

Google Application Layer Transport
Security

“The ALTS trust model has been tailored
for cloud-like containerized

applications. Identities are bound to
entities instead of to a specific server

name or host. This trust model
facilitates seamless microservice
replication, load balancing, and

rescheduling across hosts.”

“Secure authentication and authorization
within Facebook’s infrastructure play

important roles in protecting people using
Facebook’s services. Enforcing security while

maintaining a flexible and performant
infrastructure can be challenging at

Facebook’s scale, especially in the presence of
varying layers of trust among our servers.”

“During the startup, access to the
long-lived credentials and short-lived
credentials are provisioned to each

instance.

This credential bootstrap is done by
Metatron, which is a tool at Netflix,

which does credential management.”

https://cloud.google.com/security/encryption-in-transit/application-layer-transport-security/#alts_trust_model

and

A set of specifications that cover how a workload should
retrieve and use it’s identity.

● SPIFFE ID
● SPIFFE Verifiable Identity Documents (SVIDs)
● The SPIFFE Workload API

The SPIFFE Runtime Environment. Open-source software
that implements the SPIFFE Workload API for a variety of
platforms.

Apache 2.0 license. Independent governance. Highly
extensible through plug-ins.

github.com/spiffe/spiffe

github.com/spiffe/spire

SPIFFE ID

spiffe://acme.com/billing/payments

Trust Domain Workload Identifier

SPIFFE Verifiable Identity Document

spiffe://acme.com/billing/payments

Today only one form of SVID (X509-SVID).
Other document types under consideration

(including JWT-SVID)

Typically short-lived

Server

SPIFFE Workload API

Workload

Workload API

whoami()

Workload

whoami()

SPIRE Server SPIRE Server

SPIRE Agent
A cross-platform implementation of the SPIFFE specifications

SPIRE Server

spiffe://acme.com/billing/payments

selector: aws:sg:sg-edcd9784

selector: k8s:ns:payments
selector: k8s:sa:pay-svc
selector: docker:image-id:442ca9

Node

Workload

SPIRE Agent

Workload API

Workload

Design Goals of SPIFFE and SPIRE
● Application identity driven. By building a security model rooted in a strong assertion of

application identity, policies and practices become application- and business unit- oriented
rather than infrastructure-oriented.

● Easily adoptable. Users should be able to leverage Emissary with little or no code change.
The system should work well in dynamically orchestrated containerized environments.

● Federatable. It should be possible to use these identity mechanisms across business units
and even organizations.

● Reliable. The single points of failures in the system should be minimized and the system
should degrade gracefully when any single point of failure is down.

● Cloud and Container Ready. It should be possible to safely extend trust to entities running
on to third party cloud providers such as Amazon Web Services and Microsoft Azure, and
container orchestrators such as Cloud Foundry and Kubernetes.

Security Goals of SPIFFE and SPIRE
● Fully automated and policy driven. Existing identity (particularly PKI)

infrastructure is both complex and often requires “human trust”, which weakens
delivery. Emissary is fully automated and should minimize manual key
distribution.

● Minimal Knowledge. A compromised machine should only expose any secrets
for workloads that happen to be running on that machine.

● Reliable. The single points of failures in the system should be minimized and
the system should degrade gracefully when any SPOF is down. All “steady state”
operations shouldn’t have requirements off of a specific node.

● Scoped trust roots. There should be no hardcoded, global trust roots as we see
in the web browser world.

SPIFFE Workload API

Secure authentication amongst services

mTLS JWT

Identity for service mesh Bootstrap deployment for
distributed systems

gRPC

Secret
Stores

Proxy Pr
ox

y

SPIFFE Verifiable Identity Documents (SVIDs)

Cloud platform
attestation plug-ins

OS attestation
plug-ins

Scheduler and PaaS
attestation plug-ins

HSM, TPM, Kerberos
attestation plug-ins

CA and secret
store plug-ins

Use cases
How the identity plane becomes
the unifying layer for
infrastructure

Improving security posture

Minimize key leaks with secure introduction

API Service
Secret Store

or
Identity Broker

SPIRE Agent SPIRE Agent

eg. Vault, API Gateway, ADFS etc.

Authenticated
connection

Identify
workload Distribute trust

bundles

CI/CD Pipeline

Enforce and verify release pipelines

Billing
Service

SPIRE Agent SPIRE Agent

Passes attestation, is
issued identity

spiffe://acme.com/billing
● runs as user ‘billing-svc’
● in the AWS security group sg-5c24f185”, and
● runs in a docker image that been signed

by our build system’s private key.

Billing
Service

Fails attestation, is
issued identity

Artifact Built Artifact Signed Artifact Built

Authenticate developer access (BeyondCorp)
Jan’s Laptop

spiffe://acme.com/developers
/janc/macbook4

SSH

SPIRE Agent

YubiKey

User IdP

Remote Node

SSH

SPIRE Agent

HSM

spiffe://acme.com/developers/janc/macbook4
● Has authenticated as ldap user janc
● Has authenticated with the YubiKey

associated with macbook4

eg. LDAP

Improving developer efficiency

Simplify workload AuthN and AuthZ with
Service Mesh

API Service Database

SPIRE Agent SPIRE Agent

Verify the
infrastructure

Verify workload

Ambassador Proxy Ambassador Proxy

mTLS or JWT
authenticated

connection

Simplify workload AuthN and AuthZ with
Service Mesh

API Service Database

SPIRE Agent SPIRE Agent

Verify the
infrastructure

Verify workload

Ambassador Proxy Ambassador Proxy

Improving post-incident forensics with
unified telemetry

Billing Service

SPIRE Agent

Tracing Collector (eg. Jaeger)

Metrics Collector (eg. Prometheus)

Metrics Agent

Log Collector (eg. Fluentd)
Trace Lib

Log Collector

Service Mesh Secure Introduction Unified telemetry Enforcement of
Software Supply

Chain

SPIFFE (API)

Identity Plane (SPIRE)

Envoy, LinkerD,
nginx, gRPC

Vault, Confidant,
Knox

Prometheus
Grafana
Jaeger

TUF, Notary,
Grafeas

The Identity Plane becomes the unifying layer for
infrastructure

...

SPIFFE Runtime Environment

SPIRE Server

spiffe://acme.com/billing/payments

selector: aws:sg:sg-edcd9784

selector: k8s:ns:payments
selector: k8s:sa:pay-svc
selector: docker:image-id:442ca9

SPIFFE Runtime Environment

SPIRE Server

spiffe://acme.com/billing/payments

selector: aws:sg:sg-edcd9784

selector: k8s:ns:payments
selector: k8s:sa:pay-svc
selector: docker:image-id:442ca9

Node attestation

EC2 Instance

Container

SPIRE Agent

Workload API

SPIRE Server

AW
S Instance

M
etadata API

1. Node agent authenticates to the SPIRE
Server, passes AWS Instance Identity

Document

Kubelet

EC2 Instance

Node attestation

Container

SPIRE Agent

Workload API

SPIRE Server

2. List of valid SPIFFE IDs for the node, and
selectors, returned

Kubelet

EC2 Instance

Workload attestation

Container

SPIRE Agent

Workload API

SPIRE Server

3. Workload requests identity

4. Node agent performs an out-of-band
check of the workload process metadata,

compares to known selectorswhoami()

Kubelet

EC2 Instance

SVID Bundle Issuance

Container

SPIRE Agent

Workload API

SPIRE Server

5. If match found, NA generates a key for the
workload

6. NA sends certificate signing request
based on that key to SPIRE Server

Kubelet

EC2 Instance

Kubelet

SVID Bundle Issuance

Container

SPIRE Agent

Workload API

SPIRE Server

6. SPIRE server issues SVID (as well as
certificates for any other workload the

instance should support)

EC2 Instance

Kubelet

SVID Bundle Issuance

Container

SPIRE Agent

Workload API

SPIRE Server

7. Certificate bundle returned to the
workload

Kubelet

