Cloud Agnostic Serverless with Knative

Going Serverless anywhere on Kubernetes

\/

GitLab

TRIGGERMESH

SERVERLESS MANAGEMENT PLATFORM

By

o @sebgoa (Sebastien Goasguen)
o @eggshellcullen (Cullen Taylor)
e @cab105 (Chris Baumbauer)
o @pritianka (Priyanka Sharma)

e And the nice helpers from GitLab ...

By who ?

Kompose, Kmachine, kubeless, Cabin, TriggerMesh ...

@triggermesh https://github.com/triggermesh

Docker
Cookbook

FI EH'H'I' I'FIF T DAFF

Kuberhetes
Cookbook

BLALDMNG CLOUD NATIVE APPLICATIONS

Sebastien Goasguen
Sébastien Goasguen

https://github.com/triggermesh

Pre-requisites

That little sign-in card

workshop-userXYZ ON https://gitlab.tanuki.host

https://gitlab.tanuki.host/usersfsign_in

A4

GitLab Enterprise Edition

Open source software to collaborate on code

Manage Git repositories with fine-grained access controls that keep your
code secure. Perform code reviews and enhance collaboration with
merge requests. Each project can also have an issue tracker and a wiki.

o %t ® 0 | =

Signin Register

Username or email

workshop-users

Password

| Remember me Forgot your password?

Under the hood pre-requisites

e kubectl , https://kubernetes.io/docs/user-guide/prereqs/
e tm https://github.com/triggermesh/tm
e Sign-in to https://cloud.triggermesh.io

handled for you, you don't need to do it :)

https://kubernetes.io/docs/user-guide/prereqs/
https://github.com/triggermesh/tm
https://cloud.triggermesh.io/

TriggerMesh Cloud

https://cloud.triggermesh.io

e Runs Knative so you don't have to
o Exposes some of the Kubernetes API

e Free + gain time

@ https://cloud.triggermesh.io & @ v @ 0 w

&2 TRIGGERMESH SIGN UP LOGIN

https://cloud.triggermesh.io/

Lab Content

https://gitlab.com/gitlab-workshops/serverless-workshop

& https://gitlab.com/gitlab-workshops/serverless-workshopftree/master a &% @ 0 - H

4p GitLab mes® Projects ~ Groups v Activity Milestones Snippets v Search or jump to...

g serverless-worksh gitlab-workshops » serverless-werkshop * Repository

& Projeot master serverless-workshop [4+ « History Q Find file Web IDE L e
Repositor :
B Rep y (ﬁ.-‘! Update lab3 README.md @ d51224ad [
* sebgoa authored 2 hours ago
Files
Commits)
MName Last commit Last update
Branches
B labl giving up on centering tanuki 8 hours ago
Tags
) B abz add tweaks to PAT section 2 hours ago
Contributors
o B (ab3 Update lab3 README.md 2 hours ago
Compare B |ab4 Update lab4 README.md 6 hours ago
Charts [.gitlab-ciyml Add .gitlab-ci.yml 2 days ago
ekt [README.md adjust to match new workshop flow 12 hours ago
v Issues 0 [3) serverless.yml fix provider info 12 hours ago
i1 Merge Reqguests 0

[) README.md

https://gitlab.com/gitlab-workshops/serverless-workshop

Agenda

A bit of introduction

Four Labs

... it is a Workshop after all !

IT Landscape(s)

We are being bombarded with new tech every day.

Our landscapes of tools and solutions is increasingly hard to
understand

Cloud Native Landscape

Applcation Platfarms
Datubass & Data Anabyiice Srroa My Definiion

?-é'-""ﬂ PN . hg '_"'H!'

—

[om0 B mm . W Dow e @ ke semo il v
pe— AT T Y

App Definition
& Development

L

B 20 e [N

wm ﬁ a— T

Managemgnt

-
£
:

Contaner Regisires

e =
g =

S

Provisioning

oL

This landscape is intended as a map through the CLOUD NATIVE
previously uncharted tevrain of cloud native lech COMPUTING FOUNDATION
nologies. There ae many rowles o deploying a
cloud natve applicabon, with CNCF Proyecrs
representing a pavticulary wedl-traveled path 4l Redpoint athmplify

Greyed 008 A8 0N 0PN ST

It's the future !

3 C frCle{:i Product Pricing Enterprise

CircleCl Blog

Engineering Integrations Events News Culture All

It's The Future
Share on - ﬂ O

- A
https://circleci.com/blog/its-the-future/

It Is Complicated

e Create a cluster in the cloud, install a container runtime, install an
orchestrator

e Install an app packager

e Install those two or three other systems running on top of your
orchestrator

e Now deal with this new networking paradigm
e Finally get your app up after having broken it down in

nanoservices

And you will benefit from scale, resiliency and added automation, if
you do things right.

Solution

e New abstractions
e New paradigm

e Hopefully simplicity !!

Serverless

e Event Driven Architecture (decoupled components)
e Servicefull
e Fine grain pay per-use

e FaaS as processing between cloud services linked by events

File-processing

—
L |
s @ | =
oA | i~) / _ ¥ /s
& | Amazon 53 =~ AWS Lambda =5
Photograph is taken o an S5 Bucket poriesnd Lambda runs image Bhoto is resized in;:dl

mobile, and tablet sizes

Stream Processing

W]

Amazon Kinesis
Social media stream
is loaded into Kinesis

in real-time

o
&J

Lambda is
triggered

/

AWS Lambda

Lambda runs code that
generates hashtag trend data

Y

Amazon
DynamoDB
The hashtag trend
data is stored in
DynamoDB

Social media trend data
immediately available for
business users to query

Extract, Transform,

Load (ETL)

=y

Amazon
DynamoDB
Order data is stored

in an operational
database

Online order is placed

Lambda is
triggered

AWS Lambda

Lambda runs data
transformation code

Amazon Redshift

Lambda loads results
into data warehouse

Analytics generated
from data

Tractor sensors send
data to Amazon Kinesis

¥

Amazon Kinesis
Captures and streams
the sensor data
for processing by
Lambda

N | @

AWS Lambda
Lambda runs code to detect
trends in sensor data, identify Output
anomalies, and order Order is automatically placed

replacements for faulty parts for replacement parts

Observations

e AWS is again the lader
e "Simple" pipeline but that can scale

e Serverless but also ServiceFull

Challenge

How can you build these applications:

e On your own or just using the services
e Without Lockin
e Using services that may only be available on-prem

e But with limited operational cost while having scale and
resilience

Knative as a Solution

Extending Kubernetes

Builder more complete abstractions on top of k8s

e automatic scaling

better deployment scenarios

traffic splitting

automated builds

e event driven flows

CRD Example refresh

apiVersion: apiextensions.k8s.io/vlbetal
kind: CustomResourceDefinition
metadata:
name: databases.foo.bar
spec:
group: foo.bar
version: vl
scope: Namespaced
names:
plural: databases
singular: database
kind: DataBase
shortNames:
- db

Let's create this new resource and check that it was indeed created.

$ kubectl create -f database.yml
$ kubectl get customresourcedefinition
NAME KIND

databases.foo.bar CustomResourceDefinition.vlbetal.ag

Custom Resources

You are now free to create a customresource.

$ cat db.yml
apiVersion: foo.bar/vl
kind: DataBase
metadata:
name: my-new-db
spec:
type: mysql
$ kubectl create -f foobar.yml

And dynamically kubectl is how aware of the customresource you
created.

$ kubectl get databases
NAME KIND
my-new-db DataBase.vl.foo.bar

Operator Framework(s)

o Kubebuilder: https://github.com/kubernetes-sigs/kubebuilder

e Operator Framework: https://github.com/operator-
framework/operator-sdk

o Metaontroller:
https://github.com/GoogleCloudPlatform/metacontroller

... Write your own

https://github.com/kubernetes-sigs/kubebuilder
https://github.com/operator-framework/operator-sdk
https://github.com/GoogleCloudPlatform/metacontroller

Knative CRDs

Knative components are a set of Kubernetes controllers. There are
Knative CRDs and associated controllers

$ kubectl get crd | grep knative

brokers.eventing.knative.dev 39d
builds.build.knative.dev 1le60d
buildtemplates.build.knative.dev 160d
channels.eventing.knative.dev le6ed
clusterchannelprovisioners.eventing.knative.dev 1le60d
configurations.serving.knative.dev 160d
containersources.sources.eventing.knative.dev 1l60d
revisions.serving.knative.dev le60d
routes.serving.knative.dev 1le60d
services.serving.knative.dev le0d
subscriptions.eventing.knative.dev 160d

triggers.eventing.knative.dev 39d

Lab 1: Knative Serving

Knative Serving builds on Kubernetes to support deploying and
serving of serverless applications and functions.

$ kubectl get pods -n knative-serving

NAME READY STATUS

activator-6f55c97c6d-tsm5w 2/2 Running
autoscaler-84cc7b78c4-ng96p 2/2 Running
controller-db5bbf4b9-6vdq9 1/1 Running
webhook-85ddccf9c6-gfcijh 1/1 Running

Under the hood still a Deployment and a Pod ...

Knative Serving API Objects

e Service: The service.serving.knative.dev resource
automatically manages the whole lifecycle of your workload.

e Route: The route.serving.knative.dev resource maps a
network endpoint to a one or more revisions.

e Configuration: The configuration.serving.knative.dev
resource maintains the desired state for your deployment.

e Revision: The revision.serving.knative.dev resourceis a
point-in-time snapshot of the code and configuration for each
modification made to the workload.

Knative Serving Objects Diagram

Service
(my-function)

__.--‘manages -

Configuration

Route routes traffic to

(name) \

[}
Revision [----—------1
records :

Revision [---------- |

Revision [---—--—-----°

Serving Specification

apiVersion: serving.knative.dev/vlalphal
kind: Service
metadata:
name: helloworld-go
spec:
template:
spec:
containers:
- image: gcr.io/knative-samples/helloworld-go
env:
- nhame: TARGET
value: "Go Sample v1"

kubectl apply -f hello.yaml or paste itin the TriggerMesh Ul or
create it via GitLab CI.

gitlab-ci.yml explanation

Use tm tocreate a Service objectin the TriggerMesh Cloud.

stage:
- deploy-function

deploy-hello-function:
stage: deploy-function
environment: test
image: gcr.io/triggermesh/tm:latest
before_script:
- echo $TMCONFIG > tmconfig
script:
- tm --config ./tmconfig deploy --wait; echo

serverless.yml explanation

Similar to the famous Serverless framework. Get all info needed to
create a Knative service from the serverless.yaml more succint
manifest.

functions:
hello:
source: hello
runtime: https://gitlab.com/gitlab-workshops/workshop-resou
description: "python Hello function with KLR template”
buildargs:
- DIRECTORY=hello
- HANDLER=hello.endpoint

Lab 2: Serverless Containers

But but...

| thought Serverless had nothing to do with Containers, can't | just
run my code ?

Sure but it will need to run somewhere and be packaged. Containers
are a great packaging artefcats. If you give me your code, | still need
to package it, aka. Build.

Hence we need a way to create Containers within a Kubernetes
cluster

Knative Build

Could run standalone from other Knative components. You could use
it out of the box to do basic CI/CD.

$ kubectl get pods -n knative-build
NAME READY STATUS RESTART
build-controller-694d8444f8-x6z2t 1/1 Running 0
build-webhook-7d9b46cdd7-9g6rf 1/1 Running ©

But we already have GitLab CIi

And we can reliably build Container Images using GitLab ClI

Plus...

Store those images in public or private container registries

G itnl;ab

Here Comes Kaniko

kaniko is a tool to build container images from a Dockerfile,
inside a container or Kubernetes cluster.

https://github.com/GoogleContainerTools/kaniko

docker run \
-v. $HOME/ .docker/config.json:/kaniko/config.json \
-v ${context}:/workspace \
--env DOCKER_CONFIG=/kaniko
gcr.io/kaniko-project/executor:latest \
--destination runseb/foo

https://github.com/GoogleContainerTools/kaniko

One function and one app linked

e Deploy our function
e Build an App with Kaniko
e Deploy that app

Deploy this application as a serverless container ala Google Cloud
Run

sample-app-build:

stage: build-app

image:
name: gcr.io/kaniko-project/executor:debug-v0.6.0
entrypoint: [""]

script:
- /busybox/echo "{\"auths\":{\"$CI_REGISTRY\":{\"username\":
- /kaniko/executor --context $CI PROJECT DIR --dockerfile $C

Lab 3: Knative on your own

Knative gets Installed on your Kubernetes cluster via the GitLab

Knative integration.
Under the hood, Knative uses a Helm chart from:

https://github.com/triggermesh/charts

Knative

w Knative extends Kubernetes to provide a set of middleware components that are essential to build modern,
source-centric, and container-based applications that can run anywhere: on premises, in the cloud, or evenina
third-party data center.

Knative Domain Name: Knative Endpoint:

kubecon.triggermesh.io 35.226.91.21)

To access your application after deployment, point a wildcard DNS to the Knative Endpoint. More infarmation

Installed

https://github.com/triggermesh/charts

Knative Installation

At a high level we will:

e Create some CRDs
e Create some namespaces

e Launch controllers in those namespaces

Then we will be able to create the Knative API objects.

$ kubectl get ns | grep knative

knative-build Active 160d
knative-eventing Active 160d
knative-monitoring Active 160d
knative-serving Active 160d

knative-sources Active 160d

Provider Agnostic Installation

https://knative.dev/docs/install/knative-with-any-k8s/

With the 0.5 release, let's still install Istio:

kubectl apply --filename https://raw.githubusercontent.com/knat

Then the Knative CRDs:

kubectl apply --selector knative.dev/crd-install=true \
--filename https://github.com/knative/serving/releases/downl

Then the Knative controllers:

kubectl apply --filename https://github.com/knative/serving/rel
--filename https://github.com/knative/build/releases/downloc

https://knative.dev/docs/install/knative-with-any-k8s/

Lab 4: Knative eventing

Triggering Function on Events with Knative Eventing

& https://gitlab.com/triggermesh/gitlabsource a % ® Q D
g GitLab W& Projects ~ Groups ~ Activity Milestones Snippets B ~ Search or jump to...
G gitlabsource a3 triggermesh gitlabsource > Details
Project i
& Pro G itlabsource o o+ wumr 6 ok 5
Project ID: 98967919
Details

Activity I8 Apache License 2.0 -o- 54 Commits ¥ 1Branch ¢ 4 Tags [42.2 MB Files

A knative event source for Gitlab events
Releases

Security Dashboard

Cycle Analytics master gitlabsource [4+ w History Q, Findfile WebIDE & ~

Knative Eventing

Knative Eventing is a system that is designed to address a
common need for cloud native development and provides
composable primitives to enable late-binding event sources and
event consumers.

Consume events from Sources, use those events to Trigger
execution of functions.

Knative eventing Objects

Architecture still in flux (ve.6) trying to find the right abstractions to
decouple eventing from messaging and provide easy to use objects.

e Channel
e Subscription
e Broker

e Trigger

broker

subscriber

Trigger
.-/ filter \

—.- -.—D— Broker

’ Service
0 o 0 .'J: (Targetable)

Knative Eventing

When install, Knative will have a knative-eventing namespace

$ kubectl get pods -n knative-eventing

NAME READY STATL
eventing-controller-7741f79f989-xp2kc 1/1 Runni
in-memory-channel-controller-5c686c86c7-5kvgr 1/1 Runni
in-memory-channel-dispatcher-7bcd7f556-q25qgb 2/2 Runni
webhook-5b689bfcc4-78772 1/1 Runni

You may see other channel controllers (e.g Kafka, NATS, GCP
PubSub ..))

Knative Eventing Objects

Sources, Channels, Triggers, Brokers ...

apiVersion: sources.eventing.knative.dev/vlalphal
kind: CronJobSource
metadata:
name: test-cronjob-source
spec:
schedule: "*/2 * * *x *¢
data: '{"message": "Hello world!"}'
sink:
apiVersion: serving.knative.dev/vlalphal
kind: Service
name: event-display

Wrap-Up

e Knative is an extension of the Kubernetes API
e |t provides APIs to build serverless workloads
e Serving gives you scale to zero

e Eventing allows you to trigger function when events happen
Knative gives you a portability/multi-cloud solution to serverless.
You can do this lab again at your own pace !!!

Serverless is more than FaaS, it blends Event Driven Architecture
(EDA) with new containerized workloads.

Thank You

@sebgoa
@eggshellcullen
@cab105

G

TRIGGERMESH

SERVERLESS MANAGEMENT PLATFORM

GitLab

