
Smarter Kubernetes Access Control:
A Simpler Approach to Auth
Rob Scott | ReactiveOps | @robertjscott

•Challenges of authorization

•Quick recap of RBAC basics

•Understanding who has access to what in your
cluster

•Managing RBAC simply and effectively

Outline

Authorization is

Challenging

Authorization systems often feel
either too simple or too complex

Authorization is only really noticeable
when it’s getting in the way

• Organizations start with highly granular policies, doing
everything by the book

• At some point, something doesn’t work, and a
“temporary” solution emerges

• Temporary solutions are rarely temporary

Even the best intentions can
still end in failure

•Users and Groups are not actually managed by
Kubernetes

• Kubernetes RBAC configuration quickly becomes
difficult to manage at scale

Kubernetes has unique challenges

RBAC Basics
A Quick Recap of

Roles and Cluster Roles define
specific sets of actions allowed

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 name: list-deployments
 namespace: dev
rules:
 - apiGroups: [apps]
 resources: [deployments]
 verbs: [get, list]

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: list-deployments
rules:
 - apiGroups: [apps]
 resources: [deployments]
 verbs: [get, list]

• view: read only access, excludes secrets

• edit: above + ability to edit most resources, excludes
roles and role bindings

• admin: above + ability to manage roles and role
bindings at a namespace level

• cluster-admin: everything

Default Roles

Role Bindings and Cluster Role Bindings
connect accounts to roles

Avery should be able to edit the web
namespace and view the api namespace

A Simple Example

kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: avery
 namespace: web
subjects:
- kind: User
 name: avery@example.com
roleRef:
 kind: ClusterRole
 name: edit
 apiGroup: rbac.authorization.k8s.io

kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: avery
 namespace: api
subjects:
- kind: User
 name: avery@example.com
roleRef:
 kind: ClusterRole
 name: view
 apiGroup: rbac.authorization.k8s.io

Understanding
Kubernetes Authorization

Can Avery list pods? If so, why?
SUBJECT ACTION RESOURCE

kubectl auth can-i list pods --as avery
SUBJECTACTION RESOURCE

How do you know why?

{

 "kind": "SelfSubjectAccessReview",

 "apiVersion": "authorization.k8s.io/v1",

 "spec": {

 "resourceAttributes": {

 "namespace": "web",

 "verb": "list",

 "resource": "pods"

 }

 },

 "status": {

 "allowed": true,

 "reason": "RBAC: allowed by RoleBinding \"avery/web\" of  

 ClusterRole \"edit\" to User \"avery@example.com\""

 }

}

RBAC: allowed by RoleBinding

"avery/web" of ClusterRole "edit"

to User "avery@example.com"

What can Avery do?
ACTION SUBJECT

github.com/corneliusweig/rakkess

List everything Avery can do cluster wide
> rakkess —-as avery

List everything Avery can do in dev namespace
> rakkess —-as avery —-namespace dev

Who can list pods?
ACTIONSUBJECT RESOURCE

github.com/aquasecurity/kubectl-who-can

List everyone who can list pods cluster wide
> kubectl-who-can list pods

Can I see a top level overview?

github.com/reactiveops/rbac-lookup

List everyone’s access within the cluster

> rbac-lookup

List access for matching subjects within the cluster

> rbac-lookup avery

Sometimes RBAC isn’t all there is

• kubectl auth can-i - see if a user can perform a specific
action, and if so, why

• rakkess - get that same information for a specific user
across all potential actions

• kubectl-who-can - list who can perform a specific action
in a cluster

• rbac-lookup - get an RBAC (and GKE IAM) overview

Tools to help Understand RBAC

Simply and Effectively
Managing Kubernetes Authorization

• Principle of Least Privilege: Don’t grant any more
access than user’s actually need

•Use Namespaces Effectively: These need to be
granular enough for your auth strategy

•Have a Clear Update Process: Ideally this should
include automation with CI

Effective RBAC

•Centralize config: Group your RBAC configuration
together into one central place per cluster

•Give less people access: In many cases, engineers
don’t need direct access to a Kubernetes cluster

•Use default roles: For user authorization, the default
roles can cover most use cases

Simpler RBAC

github.com/reactiveops/rbac-manager
RBAC Manager

•Use more concise configuration by grouping
resources together

•Automate RBAC changes

• Support ephemeral namespaces and more with
label selectors

RBAC Manager

Deployments simplify managing pods

RBAC Definitions simplify managing role bindings

More Concise
Advantage #1

Representing our simple example from before
with an RBAC Definition

apiVersion: rbacmanager.reactiveops.io/v1beta1
kind: RBACDefinition
metadata:
 name: demo
rbacBindings:
 - name: avery
 subjects:
 - kind: User
 name: avery@example.com
 roleBindings:
 - namespace: api
 clusterRole: view
 - namespace: web
 clusterRole: edit

Path to Automation
Advantage #2

•Newly defined role bindings are reliably created

• Role bindings that require changes are updated or
replaced, even where attributes are considered
immutable (role refs)

• Role bindings that are no longer referenced are
deleted

RBAC Automation Requires

rbacBindings:
 - name: avery
 subjects:
 - kind: User
 name: avery@example.com
 roleBindings:
 - namespace: api
 clusterRole: view
 - namespace: web
 clusterRole: edit

rbacBindings:
 - name: avery
 subjects:
 - kind: User
 name: avery@example.com
 roleBindings:
 - namespace: api
 clusterRole: admin
 - namespace: web
 clusterRole: edit

rbacBindings:
 - name: avery
 subjects:
 - kind: User
 name: avery@example.com
 roleBindings:
 - namespace: api
 clusterRole: admin
 - namespace: web
 clusterRole: edit

rbacBindings:
 - name: avery
 subjects:
 - kind: User
 name: avery@example.com
 roleBindings:
 - namespace: web
 clusterRole: edit

Label Selectors
Advantage #3

rbacBindings:
 - name: avery
 subjects:
 - kind: User
 name: avery@example.com
 roleBindings:
 - clusterRole: edit
 namespaceSelector:
 matchLabels:
 team: api

•More concise and simpler configuration that groups
role bindings together

• RBAC changes are now easy to automate

• Label selectors simplify RBAC for ephemeral
environments

RBAC Manager Recap

github.com/corneliusweig/rakkess  
github.com/aquasecurity/kubectl-who-can 
github.com/reactiveops/rbac-lookup  
github.com/reactiveops/rbac-manager

Thanks!

@robertjscott

