': Securing Kubernetes with
Trusted Platform Module

KubeCon | CloudNativeCon
——— Europe 2019

Who are we, anyway? v B

Alex Tcherniakhovski Andrew Lytvynov
alextc@google.com awly@google.com
Security Engineer, Google Software Engineer, Google

Kubernetes Engine Kubernetes Engine

mailto:alextc@google.com
mailto:awly@google.com

This talk

Goals: Non-goals:
- sample of TPM capabilities - demo real implementations
- theoretical applications - pitch cloud provider features

- fuel exploration by users and sig-auth - pitch existing sig-auth projects

Tricky Security problems Km:n | CloudNativeCon

——— Europe 2019

Node trust bootstrap

- provide kubelet with credentials

- fully automated

- periodic rotation

- protect during Pod or Node compromise

Tricky Secu rlty prOblemS K:::m | CloudNativeCon

—— Europe 2019

First secret problem

- encrypt Secrets at rest
- store encryption key
- protect encryption key

e o

Tri C ky Se C u rity p ro b | e m S KubeCon | CloudNativeCon

——— Europe 2019

Cryptographic audit logging

- audit access to Secrets

- cryptographically-signed log

- verifiable log

- tamper-evident

- even with full master compromise

e o

KubeCon | CloudNativeCon
——— Europe 2019

Trusted Platform Module (TPM) crash course
Node trust bootstrap

First secret problem

Cryptographically protected audit log

=

1. Trusted Platform Module (TPM)
crash course

B Europe 2019

#What's a TPM? o s

Crypto coprocessor
Cheap, low-powered
Lots of functionality
Hardware or software

Spec designed by Trusted Computing
Group (TCG)

Spec versions 1.2 and 2.0

Image source: https://www.gigaparts.com/gigabyte-trusted-platform-module-2-0-gc-tpm2-0-s.html

https://www.gigaparts.com/gigabyte-trusted-platform-module-2-0-gc-tpm2-0-s.html

Classic use cases:

- Platform integrity

- “is this corp machine in an expected state?”
- Disk encryption

- BitLocker, dm-crypt, etc

- protect encryption keys

- verify integrity of bootloader/kernel/drivers

"

commands
0S, o >

firmware,

bootloader

TPM

Machine

TPM keys

Y

- RSA or ECDSA v
- Encryption or sighing v
- Symmetric or asymmetric —
- TPM-bound [
- no exfiltration v

TPM

- can export from TPM, but only encrypted
- Used via specialized commands
- Can be persisted, but usually flushed and re-created on demand

Platform Configuration Registers (PCRs)

Hash value of a chain of events

Same sequence of events - same PCR value
TPMZ2_Quote signs current value with a key

used to remotely prove PCR state

E—

TPM

PCR and Measured Boot

TPM

Firmware

Loads BL

Measures BL

<BL digest>

AExtend

Bootloader

0S Kernel

Pass Execution‘

Extend <0S [digest>

L

Loads 0S

Measures 0S

A

Pass Execution‘

>

source https://google.github.io/tpm-js

https://google.github.io/tpm-js/#pg_attestation

NVRAM (non-volatile RAM)

- Persistent memory
- Small capacity

- Not secure on its own
- Encrypt (seal) valuable data with a TPM key to protect

- Binary data, counters, locks

—

TPM

Endorsement Key (EK)

- Key baked into TPM — ==
- Certificate signed by TPM vendor in NVRAM v
- Used as machine identity /\

o)
>
=

~—_“ TPM

A whole lot more...

- RNG

- key hierarchies

- authorization policies

- certification

- dictionary attack protection
- command audit

- external/transferable keys

2. Node trust bootstrap

1. credentials please

2. here you go!
kubelet [kube-apiserver

Node Master

Threat model

Attacker has: Attacker wants:

- compromised Pod
- compromised Node

- exfiltrate application configs
- exfiltrate application Secrets
- persist access

kubelet

Node

kube-apiserver

Master

steal n
credentials

credentials please!

Enter X.509 CSRs and Certificates

Public key

Public key

certificate please (+CSR)

\/_

Private key

DNS: example.com

Signature

CSR

Host

signed certificate

CA private key

1.

certificate please (+CSR)

2.

signed certificate

kubelet |+
Public key
\{\ CSR
Private /////’
key
/
Node

kube-apiserver

||IIHHIII

Master

Problem: validate CSR request

0. write shared

Management
credential

plane

1. credentials please
(+shared credential)

2. here you go!
kubelet [kube-apiserver

shared Master

credential

Node

0. write shared

Management
credential

plane

kubelet kube-apiserver

v

shared 2
credential

Master

. credentials please

+shared credential
= Node ()

3. here you go!
1. steal

credential

0. write per-node

Management
credential

plane

kubelet kube-apiserver

v

Master

shared

credential

2. hi, I'm Node A

Node

3.

checks out!
1. steal
credential

Let’s use a TPM!

EK as proof of machine identity

Management

plane

2. certificate please
(+EK signature and cert)

4. check cluster membership

5. here you go!

D

kubelet [
Node private
key 1. sign Node
— public key
with EK
Node
certificate
\/_

Node

3.

kube-apiserver

Master

check EK cert
and signature |

TPM CA

But what about exfiltration of the Node
credential after provisioning?

Putitina TPM!

Management
plane

3. certificate please
(+EK signature and cert)

5. check cluster membership

kubelet

A

6. here you go!

A

1. create key

Node .
certificate 2. sign Node

with EK

Node

public key
Node private
key

TPM

kube-apiserver

Master

4. check EK cert
and signature

TPM CA

Management

plane

kubelet

kube-apiserver

Node

1. steal

/// Master

certificate

Node private
key

TPM

certificate

3. steal
private key?

Not 100% solution

Attacker can still use Node credential via RCE on the Node.
But things are in a much better state!

- requires constant Node access
- mitigated after patching vuln
- use industry standard for trust bootstrap

3. Solving the first secret problem

kube-api <—> | kms-plugin =

token

master vm

persistent disk

host

kms

KMS Plugin

kube-api <—— | kms-plugin |- > m
I token kmS
master vm
attacker
persistent disk
host offline disk

Threat Model

kube-api <+— | kms-plugin |- > m
the last mile
I token kmS
master vm
attacker
token
persistent disk token
host offline disk

The last-mile problem

kube-api <+— | kms-plugin |- > m
the last mile
I token kmS
master vm
‘ attacker
persistent disk
host offline image

Goal: Do NOT get access to keys

kube-api <— | kms-plugin

etcd E

master

I token

vm

A\

etcd data file

persistent disk

host

the last mile

Key

O

kms

attacker

etcd data file -

offline image

Solution: Seal KMS Credential to TPM

kube-api -—

L

kms-plugin | =

token

master| vm

\/

etcd data file

persistent disk

)

host

the last mile

O

kms

PCR 4

72ac..

attacker

PCR7

87be..

Key

etcd data file

offline image

Apply: PCR Policy

Sealing to PCR Values

User Supplied
PCR Values

TPM2_StartAuth
Session

Trial Session

Auth Policy:
11223344

Auth Policy:
1122 33 44

Policy Digest:
00 00 00 00

TPM2_PolicyPCR

Trial Session

Policy Digest:
11223344

TPM2_PolicyGet
Digest

TPM2_Create

source https:

oogle.github.io/tpm-ijs

https://google.github.io/tpm-js/#pg_attestation

Unsealing

User

TPM2_StartAuth
Session

Policy Session

Sealed Blob

Policy Digest:
00 00 00 00

TPM2_PolicyPCR

Policy Session

..............

Policy Digest:
1122 33 44

TPM2_Unseal

Good PCR Values

AN

Session policy

Key auth policy

source https://google.github.io/tpm-js

https://google.github.io/tpm-js/#pg_attestation

4. Tamper-evident audit logs

A

kube-api <— | kms-plugin >
token m

— kms

attacker

Symmetric
Key

1PM

master vm

Threat Model

Building Blocks

audit = Haudiwg(auditold || inputHash ||

outputHash)

Auditing TPM Commands

Issued certificate #1:
Certificate:
DEIEE TPM Audit Register
Serial Number:
10:e6:fc:62:b7:41:8a:d5:00:5e:45:b6
pub:

00:¢9:22:69:31:8a:d6:6¢c:ea:da:c3:7f:2c:ac:a5: — > TPM2-Sign ... —® 2c503..

Logs are stored externally

Issued certificate #1:
Certificate:
Data:
Serial Number:
10:e6:fc:62:b7:41:8a:d5:00:5e:45:b6
pub:
00:¢9:22:69:31:8a:d6:6¢c:ea:da:c3:7f:2c:ac:a5:

Issued certificate #2:
Certificate:
Data:
Serial Number:
19:e8:fc:62:b7:41:8a:d5:00:5e:45:b9
pub:
00:¢7:22:79:31:8a:d6:6¢c:ea:da:c3:7f:2c:ac:a5:

’

TPM Audit Register

TPM2-Sign ... —| 9b863..

Logs are stored externally

Issued certificate #1:

Issued certificate #2

Issued certificate #3:
Certificate:
Data:
Serial Number:
20:e6:fc:32:b7:41:8a:d5:00:5e:45:b9
pub:
00:a7:229:79:31:8a:d6:6¢c:ea:da:c3:7f:2c:ac:a5:

/

/

TPM Audit Register

TPM2-Sign ... = 8b300..

Attacker gets a certificate

Issued certificate #1:
Certificate:
Data:
Serial Number:
10:e6:fc:62:b7:41:8a:d5:00:5e:45:b6
pub:
00:¢9:22:69:31:8a:d6:6¢c:ea:da:c3:7f:2c:ac:ab:

Issued certificate #2:
Certificate:
Data:
Serial Number:
19:e8:fc:62:b7:41:8a:d5:00:5e:45:b9
pub:
00:c7:22:79:31:8a:d6:6¢:ea:da:c3:7f:2c:ac:ab:

/

TPM Audit Register

TPM2-Sign ... —% 8b300..

Logs are examined externally

Issued certificate #1:
Certificate:
Data: TPM Audit Register
Serial Number:
10:e6:fc:62:b7:41:8a:d5:00:5e:45:b6
pub:

00:¢9:22:69:31:8a:d6:6¢c:ea:da:c3:7f:2c:ac:a5: TPM2-Sign ..— 9b863....# 8b300

Issued certificate #2: /
Certificate:

Data: /
Serial Number:

19:e8:fc:62:b7:41:8a:d5:00:5e:45:b9
pub:

00:¢c7:22:79:31:8a:d6:6¢c:ea:da:c3:7f:2c:ac:a5:

Logs are examined externally

Issued certificate #1:
Certificate:
Data:
Serial Number:
10:e6:fc:62:b7:41:8a:d5:00:5e:45:b6
pub:
00:¢9:22:69:31:8a:d6:6¢:ea:da:c3:7f:2c:ac:ab:

Issued certificate #2:
Certificate:
Data:
Serial Number:
19:e8:fc:62:b7:41:8a:d5:00:5e:45:b9
pub:
00:c7:22:79:31:8a:d6:6¢:ea:da:c3:7f:2c:ac:ab:

TPM Audit Register

TPM2-Sign ..—%> Num Of Logs = 2

/

What if attackers reset and replay

Building Blocks

Message

One-Way Digest Func Digest

Key

Hash-Based Message Authentication Code

Message

TPM

Key

HMAC

Digest

TPM2_HMAC

Building Blocks

KMS

P@ssword01

Key
sAuBbNCJaufjo3PZS16NDHBjf0T8Z24bXObV6U=

Symmetric Encryption

KMS

AAD: system/secret/foo, plaintext: P@sswO0rd01

Key

Ciphertext: x5Q...B Tag: UyqYI jwl7 Q

AEAD Encryption

KMS

AAD: system/secret/foo, ciphertext: xX5QOCABOM..

Key
P@sswO0rd01

AEAD Encryption

KMS

AAD: system/secret/bar, ciphertext: xX5QOCABOM..

Key

Error

AEAD - AAD must match

Building Blocks

Additional Auth Data Plaintext

TPM2_HMAC (system/my-dba-pwd) P@sswO0rd01

Use TPM2_HMAC to generate AAD

On-prem

system/my-api-key

system/my-dba-pwd

kubectl get secret my-api-key
kubectl get secret my-dba-key

d

proxy

Cloud Provider

\—/

— — —
user

kube-api <«— | kms-plugin

A

TPM2_HMAC

Symmetric

Key
1PM

|

Audit: d81d4b2...

AAD: TH

M2_HMAC(KEY)

master vm

Putting it all together

KMS

Attacks not covered

* Reading directly from kube-apiserver cache

* Reading KEK from kms-plugin cache

* Waiting for a request from a legitimate user and intercepting the
response

& o

| S u m m a ry KubeCon | CloudNativeCon

——— Europe 2019

When not to use TPMs

* Performance-sensitive crypto (unless virtual)

* Bulk encryption

* As a substitute for physical security, it is tamper-resistant not
tamper-proof

Re fe r e n C e S Km:n | CloudNativeCon

——— Europe 2019

« TPM 2.0 specification

* Turtles All the Way Down: Managing Kubernetes Secrets
« Securing Kubernetes Secrets

 Continuous Tamper-proof Logging using TPM2.0

e Cryptographic Support for Secure Logs on Untrusted Machines
 go-tpm library

e K8S KMS Plugin for Google CloudKMS

https://trustedcomputinggroup.org/resource/tpm-library-specification/
https://youtu.be/rLHJZE2XKl8
https://youtu.be/DNKcRUyz4Hw
https://www.cylab.cmu.edu/_files/pdfs/tech_reports/CMUCyLab13008.pdf
https://www.schneier.com/academic/paperfiles/paper-secure-logs.pdf
https://github.com/google/go-tpm
https://github.com/GoogleCloudPlatform/k8s-cloudkms-plugin

