


Restart-Free	Vertical	Scaling	for	
Kubernetes	Pods
Vinay Kulkarni
Peng Du Huawei Cloud R&D



Agenda

• Our	Customer	Scenario
• Kubernetes	Scaling	Overview
• K8s	Pod	Scheduling	Overview
• Vertical	Scaling	Design	(Our	solution)
• Policy	Controls	&	Failure	Handling
• Integration	with	Vertical	Pod	Autoscaler
• Handling	Memory	Spikes
• Demo	
• Q&A



Motivation	&	Customer	Scenario

Genome	Analysis	Use	Case
o A	long	process	..	huge	files,	lots	of	data	crunching
o Series	of	K8s	Jobs	with	many	concurrent	containers
o Some	Jobs	run	for	~4	hours
o Several	different	steps,	E2E	takes	about	1	day
o So,	Job	restart	==	lost	work
o Customer	deploys	Pods	sized	for	peak	use,	thus	wasting	resources
o They	estimate	‘Elastic	Pod’	feature	can	yield	50-60%	cost	savings

Long	Desired	Feature
o First	In-Place	Vertical	Scaling	feature	request	raised	in	2015
o Statefulset	,	Deployment,	Serverless	use	cases



Overview:	Horizontal	Scaling

• Increase	or	decrease	Pod	instances	based	on	load
• Typically	for	stateless	applications
• Triggers:	CPU/Memory/custom	metrics



Overview:	Vertical	Scaling

• Increase	or	decrease	Pod	resources	(CPU/Memory)
• Typically	for	stateful	applications
• Triggers:	CPU/Memory	usage	metrics

• Vertical	Pod	Autoscaler	(VPA)	project	automates	this
o But	requires	Pod	restart	(currently)



K8s	Scheduling	Overview

apiserver scheduler kubelet runtime

watch	(new	pod)

bind

predicates,	
priorities,..	

watch	(pod	binding)

setup	pod,	start	container

pod	
admit	

run	
container

update	pod	status

pod	create



Vertical	Scaling	Design	Choices

• Option	1
§ Directly	update	Pod	resources
§ Scheduler	updates	cache,	Kubelet	applies	resize	in	

parallel
§ Problem:	Race	condition	between	Scheduler	&	Kubelet

• Option	2
§ Annotate	Pod	with	desired	resources
§ Scheduler	reads	annotation,	updates	Pod	resources	if	

node	has	capacity	in	its	view
§ Kubelet	‘admits’	new	resource	values,	if	node	has	

capacity



Vertical	Scaling	Design

etcd

scheduler

apiserver

controller

kubelet

1 PATCH	Job

API	caller

2Validate
Update	Job	Spec

4
Annotate	
Pod	for	
resize

3
Watch	

Job	Spec

5

Watch	
Pod	
Spec

9

Watch	
Pod	

Status
7

Watch	
Pod

If	new	size	fits,	allow	Pod	resize
Else,	evict	Pod	if	policy	allows

Else,	mark	resize	as	failed

6
Update	

Pod	
Resources	

If	new	size	fits,	resize	Pod
Else,	evict	Pod	if	policy	allows
Else,	mark	resize	as	failed

8
Set	Resize	PodCondition
Update	Pod	Status

10

If	Resize	PodCondition	is	false
Rollback	Pod	Resources



Policies	&	Failure	Handling
• Resource	Resize	Policies

§ InPlacePreferred
o Respect	PodDisruptionBudget	if	rescheduling

§ InPlaceOnly
o For	apps	that	don’t	tolerate	restart

§ Restart
o For	Java	apps	or	similar

• Resize	Failure	Handling
§ Resource	resize	can	fail	for	a	few	reasons

o Multiple	Schedulers	race	condition
o PodDisruptionBudget	violation

§ On	failure,	Scheduler	rolls	back	Pod	resource	update
§ Controller	retries	resource	resize

o Retry	InPlaceOnly	when	other	Pods	depart
o Retry	when	PodDisruptionBudget	allows	Pod	eviction



Vertical	Pod	Autoscaler	Integration

• VPA	reads	Pod	resource	usage	from	Metrics	Server
• It	reads	utilization	history	from	a	time-series	database
• VPA	Recommender	writes	recommendation	to	VPA	Object
• VPA	Updater	watches	VPA	Object,	triggers	resource	resize

watch

VPA	
Recommender

VPA	Updater

Pod	VPA	Object

Prometheus

Metrics	Server

update

metrics

utilization

recommendation
root@master:~#	k	describe	VerticalPodAutoscaler	1job2do-vpa
Name:	 1job2do-vpa
Kind:	 VerticalPodAutoscaler
...
Recommendation:
Container	Recommendations:
Container	Name: stress
Lower	Bound:
Memory: 64Mi
Target:
Memory: 129Mi
Upper	Bound:
Memory: 256Mi



Memory	Usage	Spikes

• Even	with	Restart-Free	Vertical	Scaling,	spikes	in	memory	
usage	can	cause	OOM	Kill	app	terminations
o Metrics	sampling	interval
o VPA	response	time

• oomKillDisable	annotation	controls	OOM	Killer	for	Pod

• Pod	apps	are	paused	on	reaching	limit,	until	VPA	can	
react

• Suitable	for	long-running	Jobs	where	OOM	Kill	means	
significant	loss	of	work



Demo

update



Vertical	Scaling	Success	Story

• JD.com,	one	of	China’s	largest	online	retailers,	is	using	our	work	in	pre-prod

o Resize	Deployment	Pods	for	more	optimal	cluster	resource	utilization

o Resize	Pod	resources	down	in	order	to	schedule	pending	Pods



Resources	+	Q&A

• Design	doc
o https://docs.google.com/document/d/18K-bl1EVsmJ04xeRq9o_vfY2GDgek6B6wmLjXw-kos4/

• Implementation
o https://github.com/Huawei-PaaS/kubernetes/tree/vertical-scaling
o https://github.com/Huawei-PaaS/kubernetes/pull/37

• Latest	In-Place	Vertical	Scaling	Kubernetes	Enhancement	Proposal	(KEP)
o https://github.com/kubernetes/enhancements/pull/686#


