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Motivation	&	Customer	Scenario

Genome	Analysis	Use	Case
o A	long	process	..	huge	files,	lots	of	data	crunching
o Series	of	K8s	Jobs	with	many	concurrent	containers
o Some	Jobs	run	for	~4	hours
o Several	different	steps,	E2E	takes	about	1	day
o So,	Job	restart	==	lost	work
o Customer	deploys	Pods	sized	for	peak	use,	thus	wasting	resources
o They	estimate	‘Elastic	Pod’	feature	can	yield	50-60%	cost	savings

Long	Desired	Feature
o First	In-Place	Vertical	Scaling	feature	request	raised	in	2015
o Statefulset	,	Deployment,	Serverless	use	cases



Overview:	Horizontal	Scaling

• Increase	or	decrease	Pod	instances	based	on	load
• Typically	for	stateless	applications
• Triggers:	CPU/Memory/custom	metrics



Overview:	Vertical	Scaling

• Increase	or	decrease	Pod	resources	(CPU/Memory)
• Typically	for	stateful	applications
• Triggers:	CPU/Memory	usage	metrics

• Vertical	Pod	Autoscaler	(VPA)	project	automates	this
o But	requires	Pod	restart	(currently)



K8s	Scheduling	Overview
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Vertical	Scaling	Design	Choices

• Option	1
§ Directly	update	Pod	resources
§ Scheduler	updates	cache,	Kubelet	applies	resize	in	

parallel
§ Problem:	Race	condition	between	Scheduler	&	Kubelet

• Option	2
§ Annotate	Pod	with	desired	resources
§ Scheduler	reads	annotation,	updates	Pod	resources	if	

node	has	capacity	in	its	view
§ Kubelet	‘admits’	new	resource	values,	if	node	has	

capacity



Vertical	Scaling	Design
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Policies	&	Failure	Handling
• Resource	Resize	Policies

§ InPlacePreferred
o Respect	PodDisruptionBudget	if	rescheduling

§ InPlaceOnly
o For	apps	that	don’t	tolerate	restart

§ Restart
o For	Java	apps	or	similar

• Resize	Failure	Handling
§ Resource	resize	can	fail	for	a	few	reasons

o Multiple	Schedulers	race	condition
o PodDisruptionBudget	violation

§ On	failure,	Scheduler	rolls	back	Pod	resource	update
§ Controller	retries	resource	resize

o Retry	InPlaceOnly	when	other	Pods	depart
o Retry	when	PodDisruptionBudget	allows	Pod	eviction



Vertical	Pod	Autoscaler	Integration

• VPA	reads	Pod	resource	usage	from	Metrics	Server
• It	reads	utilization	history	from	a	time-series	database
• VPA	Recommender	writes	recommendation	to	VPA	Object
• VPA	Updater	watches	VPA	Object,	triggers	resource	resize
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root@master:~#	k	describe	VerticalPodAutoscaler	1job2do-vpa
Name:	 1job2do-vpa
Kind:	 VerticalPodAutoscaler
...
Recommendation:
Container	Recommendations:
Container	Name: stress
Lower	Bound:
Memory: 64Mi
Target:
Memory: 129Mi
Upper	Bound:
Memory: 256Mi



Memory	Usage	Spikes

• Even	with	Restart-Free	Vertical	Scaling,	spikes	in	memory	
usage	can	cause	OOM	Kill	app	terminations
o Metrics	sampling	interval
o VPA	response	time

• oomKillDisable	annotation	controls	OOM	Killer	for	Pod

• Pod	apps	are	paused	on	reaching	limit,	until	VPA	can	
react

• Suitable	for	long-running	Jobs	where	OOM	Kill	means	
significant	loss	of	work
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Vertical	Scaling	Success	Story

• JD.com,	one	of	China’s	largest	online	retailers,	is	using	our	work	in	pre-prod

o Resize	Deployment	Pods	for	more	optimal	cluster	resource	utilization

o Resize	Pod	resources	down	in	order	to	schedule	pending	Pods



Resources	+	Q&A

• Design	doc
o https://docs.google.com/document/d/18K-bl1EVsmJ04xeRq9o_vfY2GDgek6B6wmLjXw-kos4/

• Implementation
o https://github.com/Huawei-PaaS/kubernetes/tree/vertical-scaling
o https://github.com/Huawei-PaaS/kubernetes/pull/37

• Latest	In-Place	Vertical	Scaling	Kubernetes	Enhancement	Proposal	(KEP)
o https://github.com/kubernetes/enhancements/pull/686#


