
Ouch!
(what I learned from being hit with a

Serverless Ruby boomerang)

Ewan Slater
@ewanslater

https://twitter.com/ewanslater?lang=en


Cloud Architect



Accidental Rubyist





VS













CNCF Definition
“Serverless computing refers to the concept of building and running applications 
that do not require server management.

It describes a finer-grained deployment model where applications, bundled as 
one or more functions, are uploaded to a platform and then executed, scaled, 
and billed in response to the exact demand needed at the moment.”

- CNCF Serverless Whitepaper





Abstraction



What is “Serverless”?
● Serverless is an abstraction of infrastructure and its operations including 

provisioning, scaling, patching, etc.

● Serverless architecture is when an app is built entirely on serverless 
components (compute, storage, networking)

● Functions (or Functions as a Service) is the compute component in a 
serverless architecture



FaaS
● Write small functions

● Do one thing well

● Easy to Understand

● Easy to Maintain

● Run on Serverless platform
○ Only consume resources at run time



Avoid



Serverless Upsides
● Make development easier

● Improve developer productivity

● Increased agility (Dev & Business)

● Reduce costs (Dev & Operations)



Serverless Downsides
● Shiny
● ball_of_mud++
● Lock - in
● Restricted choice

○ Language
○ Run - time environment

● Prescriptive / too opinionated





“Lock - in” = “Switching Costs”



Risk



“Lock - in” = “Switching Costs” * Risk















Freedom
● Language(s)
● Runtime
● Vendor independence
● Portability (multi - cloud / on premises)
● Decentralisation
● Privacy





Open Source Serverless



Language



WTF!? No Ruby?



(or Rust, or Erlang, or FORTRAN)



The Fn Project (fnproject.io)

● Open-source serverless compute platform

● Can be deployed to any cloud or on - premises

● Containers are primitives

● Language agnostic

● Active w/ large core team, 3500+ commits, 75+ contributors

● Native CloudEvents support

● Independently governed with representation at CNCF

● Promises based Orchestration (Flow)

https://fnproject.io/
https://www.cncf.io/


Functions as Containers
● Function + dependencies
● Single - purpose
● Self - Contained
● Stateless
● Ephemeral
● Run on Demand



An Fn Function
● Small chunk of code wrapped into a container image

● A descriptor (func.yaml)

● Gets input via http-stream and environment

● Produces output to http-stream

● Logs to syslog



Fn deploy details
1. Build container (multi-stage) + bump version

2. Push container to registry

3. Create/update function endpoint(s) (servers lazy load images)

MyFunc:0.0.2
MyFunc:0.0.2 MyFunc:0.0.2

Your code
Fn Service

myfunc → 
/invoke/01CW8V...

1 2 3



Endpoints
● Fn deploy creates default endpoint:

○ http://localhost:8080/invoke/01CW8VDK3BNG8G00GZJ000008S
○ Used by CLI

● A bit unfriendly

● Only one per function deployment

http://localhost:8080/invoke/01CW8VDK3BNG8G00GZJ000008S


Triggers
● Meaningful URLs

○ http://localhost:8080/t/kubecon/speaker-trigger
○ http://localhost:8080/t/kubecon/delegate-trigger

● Multiple endpoints
○ e.g internal / external

● Creation:
○ CLI
○ func.yaml

http://localhost:8080/t/kubecon/speaker-trigger
http://localhost:8080/t/kubecon/delegate-trigger


Fn Server
● API Gateway
● Manages apps and functions

○ app ⇒ group of functions (namespace)

● Handles function invocations
● Runs as a Container
● Hosts function containers

○ (Docker in Docker)



Request Process



Function Development Kits (FDKs)
● Makes it a lot easier to write functions

● Developer includes FDK package / library / gem 

● Developer writes function to the FDK’s interface 

● FDK
○ Provides input data to function

○ Writes output & errors



Anatomy of a Function



Ruby FDK

● Opens a socket in function container
○ (Fn Server connects to socket)

● Parses input from http-stream
● Executes function

○ Input
○ Context

● Sends back output on http-stream

https://github.com/fnproject/fdk-ruby




Starting Out
● How it Works!

● Project Structure

● Contribution Guidelines

● Communication Channels

● People

● Processes / practices



What I’ve done
● First issue: fix JSON format

● Support for additional formats

● Coding Standards

● Modern syntax

● Documentation

● Tutorials







Summer Holiday



And then...
● API changed

○ http-stream
○ Triggers

● My day job ⇒ Someone else’s rush job
○ “Ruby as Go”
○ It worked! ⇒ bought me time
○ Refactored ⇒ “Ruby as Ruby”







What I want to do
● Improved tests

● Flow support

● TruffleRuby runtime

● Rust FDK



What I’ve learned
● Be Polite
● Learning Curve

○ Always better to ask than assume

● People are incredibly helpful
○ Try to be as helpful yourself

● Don’t be possessive
● Focus on what you can bring to the project
● Respect other projects

○ Fellow travellers





What I’ve learned
● Manage your time

○ Family
○ Work
○ You

● Be responsive, but honest
● Set realistic expectations

○ For the team
○ For yourself

● Align with day job (if possible)



Getting others involved
● Meetups

● Conferences

● Slack as the “gateway drug”
○ User
○ “Pusher”

■ Git
■ Promoter



Why get involved?

● Fun

● Sense of Achievement

● Learning

● Moral Debt





Get Involved
● Learn more: fnproject.io

● Get in touch
○ Slack: fnproject.slack.com
○ Twitter: @fnproject

● Contribute: github.com/fnproject

https://fnproject.io/
http://fnproject.slack.com
https://twitter.com/fnproject?lang=en
https://github.com/fnproject


Take Aways #1
● Serverless is an Abstraction

○ Productivity
○ Agility
○ Scalability
○ Economics

● Fn ⇒ Open Source Serverless Platform
○ Docker based
○ Portable
○ Language agnostic
○ Multiple FDKs



Take Aways #2
● Open Source matters

● Open Source Serverless matters

● If you care…
○ Act like it
○ Contribute
○ Help others



Thank You
@ewanslater

https://twitter.com/ewanslater?lang=en

