

Networking the service mesh
proxy
Where we are, where we’re going

Agenda

• Problem: Networking the Proxies

• Review of Kubernetes Container Network Interface (CNI)

• Istio-cni deep dive

• Istio-cni future work

• Istio-cni relationship to other projects and work

• NSM summary and comparison to Istio-cni

• Cilum’s eBPF summary and comparison to Istio-cni

• References and how to contribute

Problem: Networking the Proxies

Service A
Instance

Proxy

Host / pod

Service B
Instance

Proxy

Host / pod
How is traffic
routed through
proxies without
modifying the
applications?

Problem: Networking the Proxies

• Injecting the Service Mesh proxies in the network datapath of
applications requires actions specific to the hosting environment.

• Networking the proxies ends up being coupled with proxy lifecycle
management & orchestration.

• Various approaches exist with advantages/disadvantages
• Ubiquity

• Performance

• Integration with application & proxy orchestration

Traffic Redirect Approaches

Traffic control options – the dataplane
• iptables/ip6tables REDIRECT
• eBPF—transparent proxy
• eBPF—socket redirect
• Host vswitch—e.g. fd.io/OVS

Control/Orchestration Options
• K8s pod NET_ADMIN init container
• CNI plugin
• NSM network service
• Node-agent

Proxy Lifecycle Approaches

Approach Description Pros Cons

K8s Admission Control
mutating webhook

Webhook modifies App’s k8s pod specs
to inject proxy as a sidecar container

• Simple k8s pod lifecycle
management

• Depends entirely on k8s API server

• Pod proxy not ready to network
initContainers

• Up/down-grade proxy tied to pod
lifecycle

• Potential sequencing problems
with Admission control and pod
security policy webhooks

CNI
CNI starts proxy in network namespace

and manages proxy lifecyle based on
netns lifecycle

• Pod proxy network is ready when
any containers start

• Up/down-grade totally under CNI
control (independent of pod
lifecycle

• Not leveraging k8s lifecycle
management for proxy

• More complicated proxy resource
accounting with k8s scheduler

Network Service Mesh (NSM)
Proxy instantiated by network service
create method when app pod created

• Separation of roles for network
service management from
application mesh.

• Easy tie in with other network
functions.

• Flexibility requires “solution” level
integration for an application mesh.
(cross project)

Node-agent
VM/baremetal use-case. Proxy lifecycle

and config is controlled via a node-
agent.

• Ease-of-use. Integrated with specific
application service mesh type.

• Host OS dependencies.
• Requires ability to install in host OS.

Review K8s CNI

Review of Kubernetes CNI

• More complete description available here: https://github.com/containernetworking/cni/blob/master/README.md

• Definition

“CNI (Container Network Interface), a Cloud Native Computing Foundation project, consists of a specification and
libraries for writing plugins to configure network interfaces in Linux containers, along with a number of supported
plugins. CNI concerns itself only with network connectivity of containers and removing allocated resources when the
container is deleted. Because of this focus, CNI has a wide range of support and the specification is simple to
implement.”

• The CNI is a specification not an implementation

• CNI plugins adhering to the specification are responsible for plumbing a container to the network for communications to other
containers and endpoints within the cluster and possibly endpoints beyond the cluster.

• Many 3rd party CNI plugins exist: https://github.com/containernetworking/cni/blob/master/README.md#3rd-party-plugins

• The CNI plugins can be chained to allow multiple plugins to coexist and perform different aspects of plumbing the network
connection.

• Different installation models are possible but a daemonset running on each node is most prevalent

• Istio-cni is a plugin written to address the unique requirements of plumbing containers to networks in environments utilizing a
service Mesh

https://github.com/containernetworking/cni/blob/master/README.md

Istio-cni Deep Dive

Istio-cni deep dive

• The Istio-cni project was spawned to address the problems we discussed a few minutes
back.

• It is currently tightly aligned with the Istio project
• Features and roadmap dictated by Istio needs and coordinated through Istio community
• Reviewers and contributors from Istio community
• Most testing is coupled with Istio components
• In its own repo which can allow for separate evolution, release cadence and governance

• It takes advantage of the CNI chaining properties so that it runs after the other plugins
have plumbed the pod to the network.

• Its job is to ensure that all appropriate traffic is first diverted to the Istio side car proxy
instead of the application container traffic directly accesses the network.

• Under the hood it will setup iptable rules in the netns of the pod to ensure all required
traffic is diverted through the proxy sidecar

• Installs via daemonset on each node

Istio-cni

A-cni

B-cni

istio-cni

…

C
N

I P
lu

gin
 ch

ain

kubelet

App

proxy

Pod network namespace

Istiocni node
daemonset

Kubernetes Node

A-cni

B-cni

istio-cni

…

C
N

I P
lu

gin
 ch

ain

kubelet

App

proxy

Pod network namespace

Istiocni node
daemonset

Kubernetes Node

…

Istio-cni life of a packet

TCP?
Redirect
to proxy

NAT
Prerouting

chain

Dest port
= App
Port?

TCP?

NAT
Output
chain

Owner
==

proxy?

Network

Proxy

Route

App TCP?

NAT
Output
chain

Owner
!=

proxy?

dest !=
localhost

?

Included
IP CIDR

Redirect
to proxy

iptables / ip6tables context

DNS packets

TCP/HTTP packets

Istio-cni Features

• Feature parity with istio-init container redirect
• iptables redirect

• ip6tables support in 1.2
• TPROXY support

• Separately installed and administered from other Istio components
• Installable via Helm and new istio/installer

• Tested on numerous public clouds
• Tested with a number of other CNI plugins: Calico, Weave, Flannel

• Not a standalone CNI – must be used with other CNI plugins

• Compliant to K8s CNI specification
• Support for Istio parameters via application pod annotations
• Configurable bin and conf directories
• Configurable logging level

Istio-cni Future Work

Istio-cni future work

• Proxy injection via CNI
• Implementation proposed by Marko Luksa from RH Openshift team

• Pros:
• Proxy totally within the control of cluster administration

• Decoupled proxy lifecycle management from application pods

• Proxy & networking established prior to any K8s pod execution—e.g.
initContainers

• Avoids sequencing issues with k8s Admission-controller/pod-security-policy
webhooks

• Cons:
• K8s is not performing proxy lifecycle management

• Resource accounting

NSM Summary

Istio-cni relationship to other projects

• Linkerd relationship
• Linkerd and Istio share the service mesh architecture and thus Linkerd community shares the

same set of problems with sidecar traffic redirection.
• Linkerd community has begun to support an experimental CNI option to handle traffic redirection

to the proxy: https://linkerd.io/2/features/cni/
• The Linkerd CNI model is identical to Istio’s and shares code

• Network Service Mesh (NSM)
• A Kubernetes incubation project - https://networkservicemesh.io/
• Doesn’t rely on a sidecar proxy model like Istio or Linkerd
• Would be possible to move sidecar management to NSM

• Cilium & eBPF
• https://cilium.io/
• https://prototype-kernel.readthedocs.io/en/latest/bpf/
• An alternative to iptables to handle the redirection
• Istio-cni could allow for easier adoption of eBPF

https://linkerd.io/2/features/cni/
https://github.com/istio/cni/blob/master/CONTRIBUTING.md#contribution-guidelines
https://cilium.io/
https://prototype-kernel.readthedocs.io/en/latest/bpf/

NSM summary and comparison to Istio-
cni

• Network service mesh != Istio or Linkerd service mesh

• Concentrates more on the network level and how to connect network
endpoints together

• The control plane manages connecting the network endpoints with any
required network functions (e.g. firewalls, VPNs)

• The set of required network functions is based on interaction with K8s
API server and user or admin configuration

• Co-exists peacefully with CNI based pod networking

• No tight binding to any particular dataplane implementation
• Most community activity is vswitch oriented

Network Service Mesh Architecture

Borrowed from NSM deep dive documentation: https://networkservicemesh.io/docs/concepts/deepdive/

NSM service chaining example

Sarah’s Pod Corporate intranet

Sarah simply wants a connection to the corporate Internet

NSM’s Orchestrates the result to include required network services

Corporate intranetL2/L3 Connection
Firewall
Network
Service

Firewall
Network
Service

L2/L3 ConnectionSarah’s Pod

Init
Container

Network
Service
Manager

NSM and Istio-cni integration

• At a high level Istio-cni and NSM are performing similar functions
• Both manage how pod traffic should be diverted to meet business

needs/requirements

• Istio-CNI relatively static and simple most/all traffic to proxy side-car

• Istio-CNI view constrained to individual pod

• NSM more dynamic and based on policy and configuration

• NSM view not constrained to individual pod

• NSM abstracts the proxy as just another network function

• NSM manages proxy network functions like any other network
functions.

Cilium Summary

Cilium: Networking the Proxy

• General idea: Perf/scale! Utilize eBPF to integrate policy &
identity more optimally while processing pkts (L3/4 & L7 policy)

• Depends on the host kernel version & settings

• Supports 2 modes of app<->proxy networking
• Transparent proxy—Cilium Traffic Control connects proxy

• Socket level redirect—Cilium eBPF directly connect app & proxy sockets
• Requires kernel version 4.19+

Cilium: Networking the Proxy

App Proxy

socket

TCP/IP

iptables

ethernet

loopback

socket

TCP/IP

ethernet

socket

TCP/IP

iptables

ethernet

nic

App Proxy

socket socket socket

ethernet

nic

App Proxy

socket socket socket

ethernet

nic

Cilium

iptables redirect
(no Cilium)

Cilium
Transparent Proxy

Cilium
Socket Redirect

Cilium

eBPF
endpoint

policy

eBPF L7
INPUT policy

eBPF L7
OUTPUT

policy

eBPF L7
OUTPUT

policy

References and Contributing

References and how to contribute

• CNI project: https://github.com/containernetworking/cni/blob/master/README.md

• Network Service Mesh (NSM): https://networkservicemesh.io/

• Linkerd CNI plugin: https://linkerd.io/2/features/cni/ https://github.com/linkerd/linkerd2/tree/master/cni-plugin

• How to contribute: https://github.com/istio/cni/blob/master/CONTRIBUTING.md#contribution-guidelines

• Cilium datapath with proxy: https://docs.cilium.io/en/v1.5/architecture/

https://github.com/containernetworking/cni/blob/master/README.md
https://github.com/istio/cni/blob/master/CONTRIBUTING.md#contribution-guidelines
https://github.com/istio/cni/blob/master/CONTRIBUTING.md#contribution-guidelines
https://github.com/istio/cni/blob/master/CONTRIBUTING.md#contribution-guidelines
https://docs.cilium.io/en/v1.5/architecture/

