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Problem: Networking the Proxies

• Injecting the Service Mesh proxies in the network datapath of 
applications requires actions specific to the hosting environment.

• Networking the proxies ends up being coupled with proxy lifecycle 
management & orchestration.

• Various approaches exist with advantages/disadvantages
• Ubiquity

• Performance

• Integration with application & proxy orchestration



Traffic Redirect Approaches

Traffic control options – the dataplane
• iptables/ip6tables REDIRECT
• eBPF—transparent proxy
• eBPF—socket redirect
• Host vswitch—e.g. fd.io/OVS

Control/Orchestration Options
• K8s pod NET_ADMIN init container
• CNI plugin
• NSM network service
• Node-agent



Proxy Lifecycle Approaches

Approach Description Pros Cons

K8s Admission Control 
mutating webhook

Webhook modifies App’s k8s pod specs 
to inject proxy as a sidecar container

• Simple k8s pod lifecycle 
management

• Depends entirely on k8s API server

• Pod proxy not ready to network 
initContainers

• Up/down-grade proxy tied to pod 
lifecycle

• Potential sequencing problems 
with Admission control and pod 
security policy webhooks

CNI
CNI starts proxy in network namespace 

and manages proxy lifecyle based on 
netns lifecycle

• Pod proxy network is ready when 
any containers start

• Up/down-grade totally under CNI 
control (independent of pod 
lifecycle

• Not leveraging k8s lifecycle 
management for proxy

• More complicated proxy resource 
accounting with k8s scheduler

Network Service Mesh (NSM)
Proxy instantiated by network service 
create method when app pod created

• Separation of roles for network 
service management from 
application mesh.

• Easy tie in with other network 
functions.

• Flexibility requires “solution” level 
integration for an application mesh. 
(cross project)

Node-agent
VM/baremetal use-case.  Proxy lifecycle 

and config is controlled via a node-
agent.

• Ease-of-use.  Integrated with specific 
application service mesh type.

• Host OS dependencies.
• Requires ability to install in host OS.



Review K8s CNI



Review of Kubernetes CNI

• More complete description available here:  https://github.com/containernetworking/cni/blob/master/README.md

• Definition 

“CNI (Container Network Interface), a Cloud Native Computing Foundation project, consists of a specification and 
libraries for writing plugins to configure network interfaces in Linux containers, along with a number of supported 
plugins. CNI concerns itself only with network connectivity of containers and removing allocated resources when the 
container is deleted. Because of this focus, CNI has a wide range of support and the specification is simple to 
implement.”

• The CNI is a specification not an implementation

• CNI plugins adhering to the specification are responsible for plumbing a container to the network for communications to other
containers and endpoints within the cluster and possibly endpoints beyond the cluster. 

• Many 3rd party CNI plugins exist: https://github.com/containernetworking/cni/blob/master/README.md#3rd-party-plugins

• The CNI plugins can be chained to allow multiple plugins to coexist and perform different aspects of plumbing the network 
connection. 

• Different installation models are possible but a daemonset running on each node is most prevalent

• Istio-cni is a plugin written to address the unique requirements of plumbing containers to networks in environments utilizing a 
service Mesh  

https://github.com/containernetworking/cni/blob/master/README.md


Istio-cni Deep Dive



Istio-cni deep dive

• The Istio-cni project was spawned to address the problems we discussed a few minutes 
back.

• It is currently tightly aligned with the Istio project
• Features and roadmap dictated by Istio needs and coordinated through Istio community
• Reviewers and contributors from Istio community
• Most testing is coupled with Istio components 
• In its own repo which can allow for separate evolution, release cadence and governance

• It takes advantage of the CNI chaining properties so that it runs after the other plugins 
have plumbed the pod to the network.

• Its job is to ensure that all appropriate traffic is first diverted to the Istio side car proxy 
instead of the application container traffic directly accesses the network.

• Under the hood it will setup iptable rules in the netns of the pod to ensure all required 
traffic is diverted through the proxy sidecar

• Installs via daemonset on each node 



Istio-cni

A-cni

B-cni

istio-cni

…

C
N

I P
lu

gin
 ch

ain

kubelet

App

proxy

Pod network namespace

Istiocni node 
daemonset

Kubernetes Node

A-cni

B-cni

istio-cni

…

C
N

I P
lu

gin
 ch

ain

kubelet

App

proxy

Pod network namespace

Istiocni node 
daemonset

Kubernetes Node

…



Istio-cni life of a packet
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Istio-cni Features

• Feature parity with istio-init container redirect
• iptables redirect

• ip6tables support in 1.2
• TPROXY support

• Separately installed and administered from other Istio components
• Installable via Helm and new istio/installer

• Tested on numerous public clouds
• Tested with a number of other CNI plugins: Calico, Weave, Flannel 

• Not a standalone CNI – must be used with other CNI plugins

• Compliant to K8s CNI specification
• Support for Istio parameters via application pod annotations 
• Configurable bin and conf directories
• Configurable logging level



Istio-cni Future Work



Istio-cni future work 

• Proxy injection via CNI
• Implementation proposed by Marko Luksa from RH Openshift team

• Pros:
• Proxy totally within the control of cluster administration

• Decoupled proxy lifecycle management from application pods 

• Proxy & networking established prior to any K8s pod execution—e.g. 
initContainers

• Avoids sequencing issues with k8s Admission-controller/pod-security-policy 
webhooks

• Cons:
• K8s is not performing proxy lifecycle management

• Resource accounting 



NSM Summary



Istio-cni relationship to other projects 

• Linkerd relationship
• Linkerd and Istio share the service mesh architecture and thus Linkerd community shares the 

same set of problems with sidecar traffic redirection. 
• Linkerd community has begun to support an experimental CNI option to handle traffic redirection 

to the proxy:  https://linkerd.io/2/features/cni/
• The Linkerd CNI model is identical to Istio’s and shares code

• Network Service Mesh (NSM)
• A Kubernetes incubation project - https://networkservicemesh.io/
• Doesn’t rely on a sidecar proxy model like Istio or Linkerd
• Would be possible to move sidecar management to NSM

• Cilium  & eBPF
• https://cilium.io/
• https://prototype-kernel.readthedocs.io/en/latest/bpf/
• An alternative to iptables to handle the redirection
• Istio-cni could allow for easier adoption of eBPF

https://linkerd.io/2/features/cni/
https://github.com/istio/cni/blob/master/CONTRIBUTING.md#contribution-guidelines
https://cilium.io/
https://prototype-kernel.readthedocs.io/en/latest/bpf/


NSM summary and comparison to Istio-
cni

• Network service mesh != Istio or Linkerd service mesh

• Concentrates more on the network level and how to connect network 
endpoints together

• The control plane manages connecting the network endpoints with any 
required network functions (e.g. firewalls, VPNs)

• The set of required network functions is based on interaction with K8s 
API server and user or admin configuration

• Co-exists peacefully with CNI based pod networking

• No tight binding to any particular dataplane implementation
• Most community activity is vswitch oriented



Network Service Mesh Architecture

Borrowed from NSM deep dive documentation: https://networkservicemesh.io/docs/concepts/deepdive/ 



NSM service chaining example
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NSM and Istio-cni integration

• At a high level Istio-cni and NSM are performing similar functions
• Both manage how pod traffic should be diverted to meet business 

needs/requirements

• Istio-CNI relatively static and simple most/all traffic to proxy side-car

• Istio-CNI view constrained to individual pod

• NSM more dynamic and based on policy and configuration 

• NSM view not constrained to individual pod 

• NSM abstracts the proxy as just another network function

• NSM manages proxy network functions like any other network 
functions.  



Cilium Summary



Cilium: Networking the Proxy

• General idea:  Perf/scale!  Utilize eBPF to integrate policy & 
identity more optimally while processing pkts (L3/4 & L7 policy)

• Depends on the host kernel version & settings

• Supports 2 modes of app<->proxy networking
• Transparent proxy—Cilium Traffic Control connects proxy

• Socket level redirect—Cilium eBPF directly connect app & proxy sockets
• Requires kernel version 4.19+



Cilium: Networking the Proxy
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References and Contributing



References and how to contribute

• CNI project: https://github.com/containernetworking/cni/blob/master/README.md

• Network Service Mesh (NSM): https://networkservicemesh.io/

• Linkerd CNI plugin: https://linkerd.io/2/features/cni/  https://github.com/linkerd/linkerd2/tree/master/cni-plugin

• How to contribute: https://github.com/istio/cni/blob/master/CONTRIBUTING.md#contribution-guidelines

• Cilium datapath with proxy: https://docs.cilium.io/en/v1.5/architecture/

https://github.com/containernetworking/cni/blob/master/README.md
https://github.com/istio/cni/blob/master/CONTRIBUTING.md#contribution-guidelines
https://github.com/istio/cni/blob/master/CONTRIBUTING.md#contribution-guidelines
https://github.com/istio/cni/blob/master/CONTRIBUTING.md#contribution-guidelines
https://docs.cilium.io/en/v1.5/architecture/

