
Network Machinery
A United-Front For Network Troubleshooting
with CRDs
Adel Zaalouk, SAP - @ZaNetworker

Outline

§ The State of Network Troubleshooting in Kubernetes

§ CRDs Are Not Just for Add-ons, they are for Networking Too

§ Use-Case I: Network Reachability & Traffic Shaping CRDs
§ Demo

§ Use-Case II: Kubernetized-SDN CRDs
§ Demo

Networking Landscape in Kubernetes

Previous Troubleshooting Talks / Takes

No common place, no APIs.

Great tools just die out.

How to pool-in this knowledge in
Kubernetes in a standard way?

CRDs Aren’t Just For Addons

CRDs Are For Networking Too

Network Machinery: The Idea

Utilize CRDs to build Network Troubleshooting Operators.

§ Very familiar and widely accepted by the community.

§ Many helper frameworks available.

§ Declarative configuration for the resources.

§ Out-of-the-Box feature-set such as:
§ Validating / Mutating / Conversion Webhooks

§ Versioned APIs with auto Code-Gen

§ …

Network Machinery Collection

Network Machinery Collection

Reachability & Traffic Shaping

Reachability & Traffic Shaping

Reachability & Traffic Shaping

Demo time

Network Visibility & Control

• L3 & L4 connectivity and performance checks are not enough.

• We need more intel on what’s happening in the network.

• Network Monitoring

• Networking Control

• We need to SEE and DO!

SDN / OpenFlow / sFlow Capsule

• SDN is about the Separation of the Control-Plane and Data-Plane

• An early effort for programmable networks

http://www.itc23.com/fileadmin/ITC23_files/slides/K1_McKeown-ITC_Keynote_Sept_2011.pdf

http://www.itc23.com/fileadmin/ITC23_files/slides/K1_McKeown-ITC_Keynote_Sept_2011.pdf

SDN / OpenFlow / sFlow Capsule

• SDN is about the Separation of the Control-Plane and Data-Plane

• An early effort for programmable networks

<Match, Action, Counters, Priority, Timeout,Cookie>

SDN / OpenFlow / sFlow Capsule

Our goal is to close the loop (Network Monitoring / Control)

https://sflow-rt.com/

Actual

Desired Network
Control

Network
Monitor

https://sflow-rt.com/

SDN in Containers Context (OVS)

https://www.openvswitch.org/
https://www.openvswitch.org/support/papers/nsdi2015.pdf

https://www.openvswitch.org/
https://www.openvswitch.org/support/papers/nsdi2015.pdf

Network Machinery Ingredients

Demo time

Other CRDs

apiVersion: networkmachinery.io/v1alpha1
kind: NetworkModulesValidator
metadata:

name: module-validator-daemon
spec:

nodes: all
net:

bridge:
bridge-nf-call-iptables:
ipv4:

ip_forward: 1
arp_proxy:

interface: eth0
value: 1

apiVersion: networkmachinery.io/v1alpha1
kind: NetworkPerformanceTest
metadata:

name: perf-test
spec:

type: iperf
clients:

- kind: pod | service
name: podName | serviceName
namespace: namespaceName
configuration:

protocol: tcp | udp
bandwidth: 1000m #Mbps
bidrectional: true | false

- kind: node
name: nodeName
configuration:

protocol: tcp | udp
bandwidth: 1000m #Mbps
bidrectional: true | false

servers:
- kind: ip

ip: 1.2.3.4
- kind: pod | service

name: podName | serviceName
namespace: namespaceName

Summary
• Many tools and patterns but no API or common access point.

• CRDs enables us to describe and harmonize our APIs.

• Network Machinery utilizes CRDs for network troubleshooting

• First line of defense (Reachability / Performance / Traffic Shaping)

• Second line of defense (Network Visibility / Management / Control)

• Also, sanity checking and network modules validation

Finito / Owatta (終わった)

@ZaNetworker

@zanetworker

https://github.com/networkmachinery

https://github.com/gardener

https://github.com/networkmachinery
https://github.com/gardener/gardener

Extras

CRDs Are For Networking Too

apiVersion: networkmachinery.io/v1alpha1
kind: NetworkConnectivityTest
metadata:
name: smokeping

spec:
layer: "3"
source:
name: "kube-apiserver-kind-kubecon2019-

control-plane"
namespace: "kube-system"
container: ""

destinations:
- kind: pod
namespace: default
name: somepod

- kind: pod
namespace: default
name: kubecon-pod

- kind: ip
ip: “8.8.8.8"

- kind: service
namespace: default
name: kubernetes

Reachability & Traffic Shaping

Reachability & Traffic Shaping

apiVersion: networkmachinery.io/v1alpha1
kind: NetworkConnectivityTest
metadata:

name: port-test
spec:

layer: "4"
source:

name: "kube-apiserver-kind-kubecon2019-
control-plane"

namespace: "kube-system"
container: ""

destinations:
- kind: pod

namespace: kube-system
name: kubecon-pod
port: "51"

- kind: service
namespace: default
name: kubernetes
port: "443"

Reachability & Traffic Shaping

apiVersion:
networkmachinery.io/v1alpha1
kind: NetworkTrafficShaper
metadata:

name: inject-delay | inject-loss
spec:

targets:
- kind: pod | selector

name: podName
namespace: namespaceName
targetSelector:

matchLabels:
app: demo-kubecon

configuration:
type: delay | loss
device: eth0
value: 200ms | 90%

SDN / OpenFlow / sFlow Capsule

• SDN is about the Separation of the Control-Plane and Data-Plane

• An early effort for programmable networks

http://www.itc23.com/fileadmin/ITC23_files/slides/K1_McKeown-ITC_Keynote_Sept_2011.pdf

http://www.itc23.com/fileadmin/ITC23_files/slides/K1_McKeown-ITC_Keynote_Sept_2011.pdf

Network Machinery In Action

Network Machinery In Action

Network Machinery In Action

