
Monitoring Service Architecture
and Health with BPF
Jonathan Perry, Flowmill

Agenda

• Demo: visibility into Architecture, Health and Cost
• How that worked: Linux + Kubernetes - “Flow monitoring”
• Flow vs App monitoring: Pros and Cons
• Building a complete system: Collection & analysis architecture
• Major challenges: Performance & completeness → use eBPF
• Is all this really practical?: Evaluation
• Where next: Adding Application monitoring (and how)

Hi! I’m Jonathan Perry
jperry@flowmill.com
www.flowmill.com

● Government: large-scale deployments
● MIT PhD: extreme monitoring systems

○ prod at Facebook
● Flowmill: CEO

mailto:jperry@flowmill.com
http://www.flowmill.com

Demo application

github.com/GoogleCloudPlatform/microservices-demo

https://github.com/GoogleCloudPlatform/microservices-demo

Visibility #1: Architecture

this shows the components, but how do they interact? → Demo

Visibility #1: Architecture

Visibility #1: Architecture

My architecture

diagram is fine

Visibility #1: Architecture

Is the mental model in touch with reality?
Just deployed, are old dependencies ok? New dependency?
HA: what zones are communicating?

Visibility #2: Health

● Demo: Detecting service degradation
● Demo: Detecting security group misconfiguration

Visibility #3: Cost

Top service bandwidth consumption
● per Node
● across Zones → Demo
● across Regions

How: Flow data

Source Destination Ports Bytes Drops RTTTimestamp

1418530010 172.31.16.139 172.31.16.21 20641 22 4249 2 4 ms

Linux:

Pod Image Tag ZoneIP

172.31.16.139 frontend frontend-image v1.16 us-west-1c
172.31.16.21 checkoutservice checkout-image v2.12a us-west-1a

K8s:

Source Destination Ports Bytes Drops RTTTimestamp

1418530010 frontend checkout 20641 22 4249 2 4 ms
 frontend-image checkout-image
 v1.16 v2.12a
 us-west-1c us-west-1a

Joined:

iptables

Getting Flow Data

A

B

X

A→X

A→B

(A,X)
~

(A,B)

PID=`docker inspect -f '{{.State.Pid}}' $CONTAINER` \
 nsenter -t $PID -n ss -ti

ESTAB 0 0 100.101.198.137:34940 100.65.61.118:8000
 cubic wscale:9,9 rto:204 rtt:0.003/0 mss:1448 cwnd:19

ssthresh:19 bytes_acked:2525112 segs_out:15664 segs_in:15578
data_segs_out:15662 send 73365.3Mbps lastsnd:384
lastrcv:10265960 lastack:384 rcv_space:29200 minrtt:0.002

conntrack -L

tcp 6 86399 ESTABLISHED src=100.101.198.137
dst=100.65.61.118 sport=34940 dport=8000
src=100.101.198.147 dst=100.101.198.137 sport=8000
dport=34940 [ASSURED] mark=0 use=1

$ kubectl describe pod $POD

Name: A
Namespace: staging
...
Status: Running
IP: 100.101.198.137
Controlled By: ReplicaSet/A

A X

AX
B A

Flow monitoring: Pros and cons

Pros:
● No code changes - only use info from Linux+k8s
● 100% coverage - same reason
● Small overhead - few, optimizable collection points

○ more on this in “Evaluation” section
● External visibility - observe managed services, APIs

Cons:
● No application-level error codes

○ only see proxies (bandwidth, rtt, drops)
○ solvable - more towards end of talk

Flow monitoring: system architecture

OS

Agent

Flow Collection

ECS

Match,
Enrich,

Aggregate

Flow Analysis

Kubernetes

Docker

Alerting /
Webhooks

Statistics
Engine

UIAPI:
timeseries

autocomplete
map

monitors
events

TSDB
(Prometheus)

API client
(REST, gRPC)

time
poll poll poll poll

• Completeness: Linux CLI tools are polling based

Addressing performance & completeness

• Performance: (1) iterates all sockets, (2) built for occasional use

socket

→ Misses events between polls

• Linux bpf() system call since 3.18
• Run code on kernel events
• Only changes, more data

• Safe: In-kernel verifier, read-only
• Fast: JIT-compiled

Enter eBPF

Unofficial BPF mascot by Deirdré Straughan

→ 100% coverage + no app changes + low overhead ftw!

https://twitter.com/DeirdreS

● need to be careful of races:
 # IPv4: build dict of all seen keys
 ipv4_throughput = defaultdict(lambda: [0, 0])
 for k, v in ipv4_send_bytes.items():
 key = get_ipv4_session_key(k)
 ipv4_throughput[key][0] = v.value
 ipv4_send_bytes.clear()

as for loop is running, kernel continues with
updates, clear() throws those out.

Demo:

to run a bcc container:
docker run -it --rm \
 --privileged \
 -v /lib/modules:/lib/modules:ro \
 -v /usr/src:/usr/src:ro \
 -v /etc/localtime:/etc/localtime:ro \
 --workdir /usr/share/bcc/tools \
 --pid=host \
 zlim/bcc

https://github.com/iovisor/bcc/blob/master/QUICKSTART.md
 + host pid namespace

Using eBPF

tcptop:

● instruments tcp_sendmsg and
tcp_cleanup_rbuf

https://github.com/iovisor/bcc/blob/master/QUICKSTART.md

Evaluation: CPU overhead

using perf and FlameGraph[1]

● To record: perf record -a -g -e cycles -c 5000000 -- sleep 60
● Post-process: perf script | FlameGraph/stackcollapse-perf.pl > raw.txt
● Analyze: grep -E ‘(cleanup_module|flowmill_agent)’ raw.txt |

FlameGraph/flamegraph.pl > flame.svg

→ observed 0.1% - 0.25% CPU overhead across deployments

Node Application TCP stack Collector

M cycles (%) 480,000 (100%) 220,775 (46%) 27135 (5.6%) 4,120 (0.86%)

[1] github.com/brendangregg/FlameGraph

Most aggressive customer load test:

http://github.com/brendangregg/FlameGraph

Evaluation: Network overhead

Flow observability → monitor the flow-telemetry flows
Megabytes / second

App throughput Flow telemetry %

Cluster 1 186.2 0.85 0.46%

Cluster 2 217.1 2.49 1.15%

Cluster 3 249.6 0.25 0.10%

Cluster 4 (batch) 522.0 0.16 0.031%

Cluster 5 183.0 0.02 0.013%

→ Usually < 0.5% network overhead, outliers ~1%

Evaluation: Backend QPS

TCP UDP NAT process container DNS Total events/s
per agent

Company A 1429.2 82.0 20.8 146.5 0.014 10.5 1689.014

Company B 4017.3 89.0 - 1562.1 - 1.98 5670.38

Company C
(batch)

51.0 28.8 1.05 43.8 0.55 0.5 125.7

→ For a 50-node cluster, need to process 84.4k-283.5k QPS
(~20x less for batch workloads)

→ C++ analysis pipeline: hundreds of nodes w/2 second latency
(thousands soon)

Agent event counts (per second):

Addressing the cons: application metrics

● eBPF supports user probes
→ Demo

$ go tool nm server | grep 'net/http\.'
 690a40 t net/http.Error
 64eee0 t net/http.Get
 6929e0 t net/http.HandleFunc
 6b6230 t net/http.Handler.ServeHTTP-fm
 6909e0 t net/http.HandlerFunc.ServeHTTP
 6805b0 t net/http.Header.Add
 680700 t net/http.Header.Del
 680690 t net/http.Header.Get
 680620 t net/http.Header.Set
 680750 t net/http.Header.Write
 681190 t net/http.Header.WriteSubset
 680840 t net/http.Header.clone

$./funccount -p 24503 -r './server:net/http\..*Writer'
FUNC COUNT
net/http.(*chunkWriter).Write 3
net/http.(*chunkWriter).close 3
net/http.(*chunkWriter).writeHeader 3
net/http.checkConnErrorWriter.Write 3
net/http.(*chunkWriter).writeHeader.func1 3
net/http.newBufioWriterSize 6
net/http.putBufioWriter 6
Detaching...

Flow monitoring
Visibility into Architecture, Health, and Cost

● No code changes
● Negligible overhead
● Visibility into external dependencies
● Want application metrics (in progress)

Jonathan Perry <jperry@flowmill.com>
www.flowmill.com

with eBPF

Questions? (and please reach out)

mailto:jperry@flowmill.com
http://www.flowmill.com

