

Microservices
for the Masses

Integrating the Amino OS Distributed
Cloud-native Programming Platform with
Kubernetes (github.com/Amino-OS)

Quinton Hoole (Tech VP, Futurewei)
Irene Zhang (Univ. of Washington, & Microsoft
Research)

Overview

A brief history of
the (microservice)

universe

App devs ≠
Sys devs ≠
SREs

Amino OS from
30,000’

Amino.Run: How it
Works

Amino.Run:
Evaluation and

some Data

Demo, Remaining
Challenges +

Q&A

1.
A	Brief	History	of	the	

(Microservice)	Universe

Once upon a time, applications were..

OS

• single user
• single platform
• single node

Life was good for mere mortal app devs…

OS

• Single-machine OS’s work well

• Local procs, virtual memory, files, locks...

• Pick one (or two?) good programming
languages

• App devs could understand their platform

OS

Then “Suddenly” Everything Changed…

7

• Cloud
Computing

• “Mobile-first”

• Ubiquitous
Connectivity
(Wifi... 3G…
4G… 5G…)

OS OS

OS

So Now Today’s Applications are Very
Different…

8

• Multi-user,
• Multi-platform,
• Multi-language,
• Multi-node,
• Always-on,
• Autoscaling,
• Distributed

Systems
Nightmares!

OS OS

So Containers, Kubernetes and Microservices Saved the Day

Apps could be:
• Decomposed into independently deployable

Containers
• Programatically orchestrated, driven by declarative

configuration
• Developed in many different languages

Java/Kotlin for Android, ObjC/Swift for IOS, Go/Java/Python/C/C++/…
for Linux/Windows...

• Hooked together using service meshes
Linkerd, Envoy, Istio…

• Configured, deployed, monitored and upgraded by
expert devops/SREs (basically infrastructure Ninjas).

Turns out, it’s still really, really difficult…

• distributed concurrency, synchronization,
• reliable RPC, fault tolerance,
• replication, leader election, sharding,
• code and data migration,
• observability, fault diagnosis
• As well as all the obvious
• remote invocation, load balancing, etc…

Developers still have to write the
(really hard) stuff in the

containers:

These sound like distributed
systems problems!

2.
App	devs	≠	
Sys	devs	≠	

SREs

Specialization...

App	Devs
• Know	their	app	

domain	very	well.
• Social	Networking
• Travel
• Finance
• …

• Need	to	move	really	
fast.

• Don’t	give	a	hoot	
about	distributed	
systems	algorithms,	
exponential	backoff,	
PAXOS/Raft,...

Sys	Devs
● Are	really	interested	in	

understanding	and	
solving	hard	distributed	
systems	problems.

● Are	in	very	short	supply.
● Typically	don’t	

understand	your	
specific		business	
needs.

SREs/DevOps	Engineers
● Understand	what	happens	

when	your	specific	
customers	hit	your	
specific	app,	e.g.
○ Capacity/scaling	

requirements
○ Optimal	sharding

schemes
○ What	breaks	and	why.
○ What	needs	to	be	

replicated,	updated	
etc and	how.

3.
Amino	OS	from	30,000’

What is Amino OS?

● Amino.Run:	A	distributed	microservice runtime	(we’ll	focus	on	this	today).

● Amino.Sync:	A	reactive	data	synchronization	service	that	provides	configurable	
consistency	guarantees

● Amino.Store:	A	high-performance	distributed	transactional	storage	service

● Amino.Safe:	A	distributed	privacy	and	security	manager

Amino	OS is	an	umbrella	project,	the	goal	of	which	is	to	create	a	
distributed	platform	for	coding	and	running	distributed	(cloud,	
edge	and	mobile)		microservice-based	applications.	It	has	four	

main	components:

Amino OS
Distributed Cloud-native Application Programming Platform

.

Central
Cloud
Server

Central
Cloud
Server

Edge
Cloud
Server

Edge
Cloud
Server

Mobile
Device
(Phone)

Mobile
Device
(IoT)

OS OS OS OS OS OS

Distributed Cloud-native Application Programming Platform

Amino.Run
(Process Manager)

Amino.Sync
(Memory Manager)

Amino.Store
(Storage System)

Amino.Safe
(Security System)

Distributed Cloud-native Application

Users (often mobile)

What is Amino OS?

● Amino	OS	is	based	on	several	years	of	distributed	systems	research	done	by	Irene	and	her	team	
at	the	University	of	Washington	Systems	Lab	in	Seattle,	WA.

● Amino	OS	is	the	result	of	2	years	of	collaboration	between	Quinton,	Venu and	Irene’s	teams.

We’ll Focus on Amino.Run
in this Talk

• Goals
• Architecture and How it Works
• Deployment Managers
• Experience and Evaluation
• Demo
• Q&A

Amino.Run Goals

19

1. Separate microservice application logic from system and deployment code.

2. Make application code extremely simple and intuitive

3. Allow devs and SRE’s to easily make, combine and change automated application
deployment choices across arbitrary servers and devices (cloud, edge, mobile,
IoT etc)

4. Support arbitrary programming languages

5. Performance!

6. Optionally integrate with external infrastructure systems (like Kubernetes, Istio
etc) in a very natural way.

Our Solution

20

A new system architecture that supports:

• pluggable and extensible deployment managers

• across arbitrary programming languages (using
GraalVM)

• and operating systems

Amino.Run Architecture

21

Sapphir
e

Object
Distributed Application

DK
Server

DK
Server

DK
Server

Deployment Management Layer

Deployment Kernel
OSOS OS

Can run on
Kubernetes

Partitioned into Microservices, which:

• Run in a single address space with transparent RPC.

• Execute anywhere and move transparently and intelligently.

• Provide a unit of distribution for deployment managers.

• May be written in any programming language (using GraalVM)

• Can pass data structures transparently between programming
languages (using GraalVM Polyglot)

23

Amino.Run Application

• High-performance polyglot
VM (think JVM)

• Native via Ahead-of-Time
compilation, or JIT

• Embeddable

• Allows Microservices, Amino
Kernel and DMs all in
different languages

A brief word about multi-language and GraalVM

Amino.Run Architecture

25

DK
Server

DK
Server

DK
Server

Distributed Application

Deployment Management Layer

Deployment Kernel
OSOS OS

Provides best-effort distribution services, including:

• Microservice instantiation, replication, tracking, and
migration.

• Making and routing RPC to Microservices.

• Managing, distributing and running deployment
managers.

26

Deployment Kernel

Amino.Run Architecture

27

DK
Server

DK
Server

DK
Server

Deployment Management Layer

DK
Server

DK
Server

OTS
ServerDeployment Kernel

OSOSOS

Consists of deployment managers, which:

• Extend the functions and guarantees of the deployment kernel.

• Sharding, Method Replication, Caching etc

• Interpose on Microservice calls and events.

• Easy to choose and change without modifying the application.

• Can be arbitrarily combined! (with some obvious restrictions)

• E.g. Replicated shards, Transactional replicas, Retries over sharded
transactions, etc…

28

Deployment Management Layer

Amino.Run Architecture

29

Replication Code-offloadingLease CachingDeployment Management Layer

DK
Server

DK
Server

OSOS

OTS
Server

OS

Deployment Manager Library

Immutable

AtLeastOnce
RPC

Keep In
Place

Keep On
Device

Keep In
Cloud

Primitives
Explicit
Caching

Lease
Caching

Writethroug
h Caching

Consistent
Caching

Caching
Serializable

RPC

Locking
Transactions

Optimistic
Transactions

Serializability
Explicit

Checkpoint

Periodic
Checkpoint

DurableRPC

Durable
Transactions

Checkpoint

RSM-Cluster

RSM-Geo

RSM-P2P

Replication
Explicit

Migration

Dynamic
Migration

Explicit
Code-offload

Code-offload

Mobility
LoadBalance
d Frontend

Scale-up
Frontend

LB Master-
slave

Scalability

Extensible with the Deployment Manager API!

31

Outline

32

1. Architecture

2. Deployment
Managers

3. Experience and
Evaluation

Deployment Manager API
Deployment Manager (“DM”) components, which the Amino.Run kernel
creates, deploys and invokes automatically:

• Server-Side DMs: Co-located with the Microservice Replica (i.e.
server process/container).

• Client-Side DMs: Co-located with remote references to the
Microservice.

• Group Coordinator DMs: Co-located with fault-tolerant
Microservice Management Service (MMS aka OMS).

33

Server DM

Micro-
service
Replica

Group DM

DK
Server

DK
Server

DK
Server

OSOS OS

Replication

Micro-
service

Server DM

Micro-
service
Replica

Client
DM

Stub

Client
DM

Stub

Deployment Manager Architecture

Server DM

Micro-
service
Replica

Leader
Client

DM

Stub

Replication

DK
Server

DK
Server

DK
Server

OSOS OS

Micro-
service

Server DM

Micro-
service
Replica

Server DM

Micro-
service
Replica

Replicating a Microservice

Server DM

Client
DM

Server DM

Micro-
service

Cloud

Micro-
service

Stub

Micro-
service

Offloading a Microservice

DK
Server

DK
Server

DK
Server

OSOS OS

Stub
Micro-
service

Caching

DK
Server

DK
Server

DK
Server

OSOS OS

Client
DM

Micro-
service

Caching Microservice State

Server DM

Micro-
service

Master

• See more in the demo later.

• Automatic Stateful Object Migration

Sapphire Architecture

39

Sapphir
e

Object
Sapphire Application

DK
Server

DK
Server

DK
Server

Deployment Management Layer

Deployment Kernel
OSOS OS

Sapphire Objects are the units of
addressing, locality and distribution.

Sapphire provides a single address-space spanning
mobile devices and cloud servers.

Sapphire Architecture:
Deployment Kernel

40

DK
Server

DK
Server

DK
Server

Sapphir
e

Object

Deployment Management Layer

Deployment Kernel
OSOS OS

These services include:
✦ object addressing and tracking
✦ best-effort RPC

The deployment kernel provides core distribution
services with few guarantees.

Sapphire Architecture:
Deployment Managers

41

Sapphir
e

Object

DK
Server

DK
Server

DK
Server

OSOS OS

Deployment Management Layer

42

Sapphir
e

Object

Replication

Sapphire Architecture:
Deployment Managers

Lease Caching Code-offloading

Sapphir
e

Object

Sapphir
e

Object

Deployment Management Layer
DK

Server
DK

Server
DK

Server
OSOS OS

Deployment managers interpose on
events in the deployment kernel.

Deployment managers extend the
functions of the deployment kernel.

A Brief Note Regarding Composition of
Deployment Managers

• Implemented through chaining deployment managers

• Done automatically by the kernel

• SRE just provides ordering (via config)

43

Outline

45

1. Architecture

2. Deployment Managers
3. Experience and
Evaluation

Dell Server Nexus 7 Nexus S

8-core
Intel Xeon

2GHz

4-core
ARM Cortex A9

1.3GHz

1-core
ARM Cortex A8

1GHz

8GB 1GB 512MB

OS

Experimental Setup

46

Dell Server Nexus S

8-core
Intel Xeon

2GHz

1-core
ARM Cortex A8

1GHz

8GB 512MB

OS

Experimental Setup

47

1GHz

Peer-to-Peer Multiplayer Game

48

0

8

15

23

30

Player 1 Player 2 Player 1 Player 2 Player 1 Player 2

m
ilis

ec
on

ds
Read Write

Keep In
Cloud

Keep On
Device RSM-P2P

Base WiFi 4G

Network

Code-offloading for Physics Engine

49

1190 ms

0

100

200

300

400

500

Base WiFi 4G

m
illi

se
co

nd
s

Phone Tablet

Summary

50

Modern microservices implement difficult
distributed deployment tasks.

Amino.Run is a new programming system for
deploying interesting distributed applications
including cloud-native, mobile/cloud, edge/cloud.

Deployment managers makes it easy to
choose, combine, and customize deployment
options.

Next Steps?

51

.

• Migrating	state	that’s	not	inside	the	application	or	Amino	system	
(e.g.	local	files,	Linux	timers	etc).

• Some	rough	edges	between	certain	language	combinations.
• Additional	plugins	for	external	systems	(Istio,	etcd,	TiKV,	etc)
• Federations	and	disconnected	Edge	scenarios.

Get Involved

52

.

• Slack	channel:	Amino-OS.slack.com
• Web	site:	www.Amino-OS.io
• Contributions	most	welcome
• Repo:	github.com/Amino-OS/Amino.Run

Demo

Q	&	A

54

Sapphir
e

Object

Replication

Sapphire Architecture:
Deployment Managers

Lease Caching Code-offloading

Sapphir
e

Object

Sapphir
e

Object

DK
Server

DK
Server

DK
Server

OSOS OS

sapphireclass MyObject
uses ReplicationManager {
....

LeaseCachingManagerCodeOffloadManager

Deployment Manager Composition

• Implemented through chaining deployment managers (done
automatically by the kernel, SRE just provides ordering via
config)

55

56

Sapphire Deployment Manager API

RSM-Geo LeaseCaching
Code-

offloading

DK Server DK Server DK Server

OS

Tablet

OS

Server

OS

Phone

Deployment Kernel

Micro-
service

Micro-
service

Micro-
service

?

DK
Server

DK
Server

DK
Server

Prox
y

Instanc
e

Manag
er

Prox
y

Prox
y

Coordina
tor

Sapphir
e

Object

Lease Caching Manager

Instanc
e

Manag
er

Lease Caching Deployment Manager

58

1. Why are applications harder to build today?

2. What would make applications easier to build?

3. How does Sapphire make applications easier to build?

Applications mix application logic and deployment.

A customizable and extensible programming platform.

Sapphire has a flexible architecture that supports pluggable and
extensible deployment managers.

Sapphire
Distributed programming platform for
mobile/cloud applications.

The Goal
Separate deployment code from application logic.*

The Solution
A flexible and extensible distributed
kernel/runtime system with pluggable and
customizable deployment managers.*

* Keep the application
in control of deployment decisions.

59

Sapphire
• Eases the programming of mobile/cloud

applications.

• Provides flexibility in choosing and
changing deployment decisions.

• Gives programmers fine-grained control
over performance trade-offs.

60

Work in progress ...
11 Sapphire applications built or ported so

far.

Fully-featured Twitter-clone in 783 LoC.

26 Sapphire Object Managers implemented.

Paxos state-machine replication in 129 LoC.

What we have done...
11 Sapphire applications built or ported.

Fully-featured Twitter-clone in 783 LoC.

26 Sapphire Object Managers implemented.

Paxos state-machine replication in 129 LoC.

Cache a cloud app on a mobile device in 1 LoC.

Offload a mobile app to the cloud in 1 LoC.

Change a client-server app to P2P in 1 LoC.

What you can do ...

Sapphire
A distributed programming environment for
mobile/cloud applications that consists of:

63

An object programming model for applications

An extensible object management library

A distributed runtime system

5 Things To Do In
1 Line of Sapphire Code:
1. Make an object globally accessible by marking it

as a Sapphire Object.

2. Cache an object on a device and keep it
consistent.

3. Replicate an object and keep it consistent using
Paxos.

4. Offload an object from a device to the cloud.

5. Deploy an object peer-to-peer across clients.
64

Contributions
• New distributed object model for the

wide-area environment and heterogeneous
compute platforms.

• Runtime library of common deployment
strategies and distributed management tasks.

• Customizable and extensible distributed
runtime system for mobile devices and
cloud servers.

65

F. A. Q.
model of your choice]?
Unlike previous object systems,
Sapphire’s object model is designed for
the wide-area environment and
heterogeneous compute platforms.

Runtime library of common
deployment strategies and distributed
management tasks.

What about performance trade-
offs?
Programmers can both customize and
extend Sapphire’s distributed runtime

66

Experience and Evaluation
• 11 applications built and/or ported to Sapphire,

including a Twitter clone in less than 800 LoC.

• 26 SOMs, including code offloading and Paxos
replication, each less than 180 LoC.

67

“I had little knowledge of distributed systems going into this
project ... writing the application was surprisingly simple ...
requiring only a shallow knowledge of distributed systems.”

“Building runtime management in a SOM is easy if you have
done event-based programming... you don’t have to worry about
monitoring the state of things across the application ... with
DVM support for distribution tasks like replication and
placement most of the hard work is done for you.”

Goals
1. Create a uniform distributed programming

platform.

2. Keep the programmer aware of
performance costs.

3. Separate application logic from deployment
and distribution logic.

4. Give the programmer control of
performance trade-offs.

68

SOM Framework

69

Framework for building application-agnostic
distributed runtime extensions that:

• Manage the distribution and runtime of one
Sapphire Object via interposition on the
Sapphire DVM.

• Extend the semantics or performance of the
Sapphire DVM.

• Encompass the policy and mechanism of one
distributed management task.

