

Manage CRDs and
Operators in Practice
Zhen Zhang shouchen.zz@alibaba-inc.com
Wei Guo kira.gw@antfin.com

mailto:shouchen.zz@alibaba-inc.com
mailto:kira.gw@antfin.com

Alibaba’s Journey to Cloud Native

2011: containerize

• LXC(T4)
• Rich Container
• script

2015: dockerize +
smart scheduling

• Docker(Pouch)
• Rich Container

with Dockerfile
• Swarm(Sigma)

2018: k8s with
basic orchestration

• Docker(Pouch) +
RunC

• Pod with single
rich container

• K8S

2019: cloud native

• Docker(Pouch) +
RunC

• Pod with light
container

• K8S

Why CRD and operator

Stateful App Management Enhancement

Integration with infrastructure Opensource & innovation

Who are building CRD and operator

“Captain” “Cowboy” “Business Man”

• us (from our own eyes)
• admin of your k8s clusters
• k8s and golang knowledge and

experience
• Sheldon Cooper

• Other teams (from our own eyes)
• Expert of some PaaS or

maintainer of other’s k8s cluster
• Limited k8s and golang

knowledge and experience
• Always mess sth up with insane

ideas

• Expert of applications
• In depth knowledge about apps
• No k8s or golang knowledge and

experience but very curious
• Lots of legacy
• Some are forced to write

operators

Problems: learn to write operators

Time

Le
ar

ni
ng

concept
overloaded

Language barrier

Controller pattern
Kubectl
operations

Operator
toolkits trial

Get cold feet or Java client familiarity

Solutions: speed up learning

1. Easy and early access to test cluster
2. Direct document reading
3. Direct operator toolkit selection
4. Easy access to sample operators (your local awesome operators)
5. Learn controller patterns
6. Make CRD and operators standards and best practice

Problems: improper naming

Deployment Naming collision with core types
PetSet.extensions unclear group meaning

CRD naming

Labels naming
Region. Conflict with standard label failure-domain.beta.kubernetes.io/region

Solutions: crd standards

• CRD naming conventions

Diamond.middleware.alibaba.com

Kind
Company
domainorganization

• Predefined resource category: apps, data, auth etc.

• Company wide common labels

• All apps CR must provide scale subresource and RolloutControlDefinition

common pitfalls and best practise

1. Package management through operator

2. Reinvent the wheels

3. imperative design

1. Package management through helm, create
operator only if app specific logic required

2. Use k8s existing types if any (statefulset,
configmap)

3. declarative design

Problems: manual access control

Bad experience

Error prune

Not repeatable

Time consuming

Solutions: CI/CD based access review

Resource
review

apply resource
for each cluster

Developer

Resource
Metadata repo

Cluster admin

Multiple clusters

Syntax and compliance
test

review & test

Common review problems
1. Incorrect CRD scope
2. Excess permission
3. No update the operator list
4. Duplicate operators
5. Webhook for core types (pods & nodes)
6. Delete crd without clear resources (danger!)

Common test problem
1. Missing kubeconfig or service account
2. Incorrect role or rolebinding name
3. Conflict name with other crd or core types
4. Install in namespace kube-system

kubeconfig & webhook issuer

Automatic kubeconfig issue Automatic webhook cert generation

Problems: integration with CICD pipeline

Rollout control

Config repo

cr

Commit code

Code repo

build Push image

Docker registryDeveloper

operator

Update image

Commit config

CI

Templating

CD

Solutions: common helm values

Values.yaml cr.yaml

No crd-install required

Solutions: common rollout control

apiVersion: apps.sigma.ali/v1alpha1
kind: RolloutControl
metadata:

name : diamond-control
spec

resource: diamond1
paused: “true”
updateStrategy:

partitions: 10
maxUnavailable: 30%

status:
replicas: 100
readyReplicas: 100
updatedReplicas: 100
ObservedGeneration: 10

apiVersion: apps.sigma.ali/v1alpha1
kind: RolloutControlDefinition
metadata:

name: diamond-control-def
spec:

controlResource:
apiVersion: apps.middleware.ali/v1alpha1
resource: Diamond

specPath:
paused: .spec.paused
partitions: .spec.strategy.rollingUpdate.partitions
maxUnavailable: .spec.strategy.rollingUpdate.maxUnavailable

statusPath:
replicas: .status.replicas
readyReplicas: .status.readyReplicas
updatedReplicas: .status.updatedReplicas
observedGeneration: .status.observedGeneration

Questions?

