
Learn how to Leverage
Kubernetes to Support 12
Factor for Enterprise Apps
Dr.	Brad	Topol
IBM	Distinguished	Engineer

@bradtopol

Michael	Elder
IBM	Distinguished	Engineer

@mdelder

Let’s deploy
our apps on
the cloud!

2© 2019 IBM Corporation

Why?

3© 2019 IBM Corporation

1.Cloud has evolved as a strategy for
disruption driven by continuous
delivery.

2. Cloud elasticity enables microservices
architectures to scale out quickly, but
also roll new updates out at immense
speeds.

3.Data becomes the fuel for business
innovation.

4.AI becomes the catalyst to turn data
into brilliant user experiences.

5.Profit! Or really, reduce overall cost.

4

What is a
12-factor

app?
https://12factor.net/

• “12-Factor” is a software
methodology for building
scalable microservice
applications

• Originally created by Heroku

• Best practices designed to
enable applications to be built
with portability, resilience,
and scalability when deployed
to the web

5

I. Codebase
One codebase tracked in revision control, many deploys
II. Dependencies
Explicitly declare and isolate dependencies
III. Config
Store config in the environment
IV. Backing services
Treat backing services as attached resources
V. Build, release, run
Strictly separate build and run stages
VI. Processes
Execute the app as one or more stateless processes
VII. Port binding
Export services via port binding
VIII. Concurrency
Scale out via the process model
IX. Disposability
Maximize robustness with fast startup and graceful shutdown
X. Dev/prod parity
Keep development, staging, and production as similar as
possible
XI. Logs
Treat logs as event streams
XII. Admin processes
Run admin/management tasks as one-off processes

Why
12 factor

apps?

https://12factor.net/

• Make it easier to run, scale, and
deploy applications

• Keep parity between development
and production

• Provide strict separation between
build, release, and run stages

I. Codebase
One codebase tracked in
revision control, many deploys

II. Dependencies
Explicitly declare and isolate
dependencies

III. Config
Store config in the environment

IV. Backing services
Treat backing services as
attached resources

V. Build, release, run
Strictly separate build and run
stages

VI. Processes
Execute the app as one or more
stateless processes

VII. Port binding
Export services via port binding

VIII. Concurrency
Scale out via the process model

IX. Disposability
Maximize robustness with fast
startup and graceful shutdown

X. Parity between dev & prod
Keep development, staging,
and production as similar as
possible

XI. Logs
Treat logs as event streams

XII. Admin processes
Run admin/management tasks
as one-off processes

Code Deploy Operate

7

I. Codebase
One codebase tracked in
revision control, many deploys

V. Build, release, run
Strictly separate build and run
stages

X. Parity between dev & prod
Keep development, staging,
and production as similar as
possible

Code Factors Mapped to Kubernetes

Container images built from
Dockerfiles + Kubernetes
Declarative YAML based
deployment

Using same container images
and Kubernetes YAML objects
in both dev and production

Continuous Delivery and
leveraging Kubernetes support
for deploying updates

8

II. Dependencies
Explicitly declare and isolate
dependencies

III. Config
Store config in the environment

IV. Backing services
Treat backing services as
attached resources

VI. Processes
Execute the app as one or more
stateless processes

VII. Port binding
Export services via port binding

Deploy Factors Mapped to Kubernetes

Container

Secret

Service
ConfigMap

Persistent
Volume

Pod

IX. Disposability (Pods)
Maximize robustness with fast
startup and graceful shutdown

Common Services
(logging, monitoring,

audit, etc)

VIII. Concurrency
Scale out via the process model

XI. Logs
Treat logs as event streams

XII. Admin processes
Run admin/management tasks
as one-off processes

Operate Factors Mapped to Kubernetes
Deployment
(ReplicaSet)

Stateles
s

Stateless

StatefulSet
Stateful

Job
Batch

DaemonSet
System

Job
Batch

An
app

to
talk

about
10

Code factors for our app

11

Application to deploy
apiVersion: extensions/v1beta1
kind: Deployment
metadata:
name: watson-conversation-app
spec:
replicas: 2 # tells deployment to run 2 pods matching the
template
template: # create pods using pod definition in this template
metadata:
labels:
app: watson-conversation-app
tier: frontend

spec:
containers:
- name: watson-conversation-app
image: mycluster.icp:8500/default/conversation-

simple:alt
resources:

requests:
cpu: 100m
memory: 100Mi

env:
- name: WORKSPACE_ID
valueFrom:
configMapKeyRef:
name: car-dashboard-config
key: workspace_id

- name: CONVERSATION_SERVICE_CAR
valueFrom:
secretKeyRef:
name: binding-conversation-service-car
key: binding

1.Container Images are built
from Dockerfiles. Kubernetes
Deployments, etc are
managed as YAML (Factor #I)

2. Having a strong artifact-driven
model makes it easier to follow
a Continuous Delivery lifecycle
(Factor #V)

3. Using the same images and
YAML objects make it easier for
dev teams to match what’s
running in production
(Factor #X)

Deploy factors for our app

12

1.ConfigMaps and Secrets can be
managed in source repositories or
built dynamically via commands
(Factor #III)

2. Our container image runs as a
container process in a Pod with other
containers (Factor #VI)

3. A collection of Pods can expose or
consume Services via port bindings
(Factor #IV & Factor #VII)

Pod
(Single IP Address)

Volume

Volume

container

container
container

Volume

Secret

ConfigMap

Operate factors for our app

1. A Deployment includes a
ReplicaSet which declares the
desired availability policy (Factor
#VIII)

2. If a Pod fails, Kubernetes will
attempt to recover it via
restarting the Pod or scheduling
it to a new node (Factor #IX)

3. Running our app as a container
makes it possible to capture all
logs, metrics, and other
management functions in a
consistent way (Factor #XII)

Great, but 95%
of my workloads
do not fit 12-
factor!

14

Code factors for middleware

15

1.Helm Charts are an open way
to package 12-factor apps, but
also middleware like IBM MQ
Series (F#I)

2. Providing a catalog of Helm
Charts either from the
community or your internal
teams makes it easier to build
production-like environments
(F#V)

3. Just like apps, build these into
Continuous Delivery pipelines
for canary testing your
upgrades of critical supporting
services

• IBM MQ Series is a leading
provider of messaging services
for enterprise apps;

• Great example of a critical
component that isn’t 12-factor

Deploy factors for middleware

16

1.Secrets used to configure credentials
and TLS certificates (F#III)

2. MQ built as a container image that
runs as a container process in a Pod
(F#VI)

3. Admin console, app messaging ports,
and metrics ports exposed via
Services with port bindings (F#IV &
F#VII)

MQ
(Single IP Address)

Volume

mq

Secret

Service

Operate factors for middleware

1. A StatefulSet that declares the
desired availability policy for MQ;
a database might scale out
replicas or prepare
primary/secondary failover
(F#VIII)

2. Recovered Pods re-mount the
same PersistentVolumes (F#IX)

3. All Pods can have logs, metrics,
or other management details
captured automatically by your
Kubernetes provider (F#XII)

Continuous Integration & Delivery

18

1. Exposing all of your datacenter via
container images with a Kubernetes
orchestrator will take time for full
maturity

2. Potential to dramatically simplify
delivery of services and ongoing
operations with built-in control
planes for running containers

3. Start NOW to leverage these same
features designed for 12-factor apps
to expose more production-like
environments (F#V) for your
devs/LOBs

Enough
talking,
let’s see it
LIVE!

19

Leverage the IBM Cloud Garage
Method to change how you work.

20

Provides an in-depth collection of
practices, tutorials, and
architectures to help you on this
journey.

Completely open forum for learning
at your own pace.

We offer hands-on guidance and
services, if needed.

Defined
Practices

Business
Benefits

Technical
Benefits

ibm.com/cloud/garage >

Find IBM Cloud Garages worldwide

21

AUSTIN COPENHAGEN DUBAI LONDON MELBOURNE

MUNICH NEW YORK NICE SAN FRANCISCO SÃO PAULO

SINGAPORE TOKYO TORONTO

Get your hands in the code

22

developer.ibm.com/patterns >

232323

Free Community
Edition

Try Kubernetes with
IBM Cloud Private

ibm.biz/Try-IBMCloudPrivate >

24

Learn
more in

our new
book!

Now available
online
compliments of
IBM (see
above)!

Come see me
to get it signed!

ibm.biz/BdYA4i >

25

