

Introduction to NATS
Waldemar Quevedo
Synadia Communications, Inc

● Waldemar Quevedo / @wallyqs

● Software Engineer at Synadia Communications, Inc

● NATS core maintainer

● Using NATS based systems since 2012

● Author of Practical NATS (Apress, 2018)

About me

https://twitter.com/wallyqs

Agenda

● Overview of the NATS project

● New features part of the NATS v2

● Demo

NATS Overview

About NATS

NATS is an eight year old, production proven, cloud-native messaging system
made for developers and operators who want to spend more time doing their
work and less time worrying about how to do messaging.

✓ DNA: Performance, simplicity, security, and availability
✓ Built from the ground up to be cloud native
✓ Multiple qualities of service
✓ Support for multiple communication patterns
✓ Over 30 client languages

CNCF Landscape

Joined CNCF as an

incubation project in

2018

https://landscape.cncf.io

https://landscape.cncf.io

CNCF Landscape

Joined CNCF as an

incubation project in

2018

https://landscape.cncf.io

https://landscape.cncf.io

CNCF Landscape

https://landscape.cncf.io

https://landscape.cncf.io

Contribution stats

● Over 1000 contributors, over 100 with more than 10 commits*
● 30+ public repos

○ 50+ releases
○ 8000+ GitHub stars across repos

● ~35M NATS server Docker Hub pulls
● ~25M NATS streaming server pulls
● 1200+ Slack members
● 20+ releases of the NATS server since June 2014, ~= 5/year

https://nats.devstats.cncf.io/d/9/developers-summary

https://nats.devstats.cncf.io/d/9/developers-summary

History

Created by Derek Collison

Derek has been building messaging systems
and solutions > 25 yrs

Maintained by a highly experienced
messaging team

Engaged User Community

Derek Collison
Founder and CEO at Synadia

Founder and former CEO at Apcera
CTO, Chief Architect at VMware
Architected CloudFoundry
Technical Director at Google
SVP and Chief Architect at TIBCO

Growing Community: NATS End Users

Use Cases

● Cloud Messaging
✓ Services (microservices, service mesh)
✓ Event/Data Streaming (observability, analytics, ML/AI)
✓ Command and Control

● IoT and Edge
✓ Telemetry / Sensor Data / Command and Control

● Augmenting or Replacing Legacy Messaging

NATS as an always available dial tone to

connect everything

Core of NATS:
3 Simple Patterns

Messaging Patterns

✓ Publish/Subscribe

✓ Load Balanced Queue Subscribers

✓ Request/Reply

Subjects

A subject is simply a string representing an interest in data.

● Simple subject: foo
● Hierarchically Tokenized: foo.bar
● Wildcard subscriptions

✓ foo.* matches foo.bar and foo.baz.

✓ foo.*.bar matches foo.a.bar and foo.b.bar.

✓ foo.> matches any of the above

✓ > matches everything in NATS

Request/Response (1:1)

NATS
Client

NATS
Client

Publish/Subscribe (1:N)

SUB foo

PUB foo

NATS
Client

NATS
Client

NATS
Client

NATS
Client

Load Balanced Queues

PUB foo

NATS
Client

NATS
Client

NATS
Client

NATS
Client

SUB foo workers

Load Balanced Queues

PUB foo

NATS
Client

NATS
Client

NATS
Client

NATS
Client

SUB foo workers

Randomly distributed

Load Balanced Queues

PUB foo

NATS
Client

NATS
Client

NATS
Client

NATS
Client

SUB foo workers

Randomly distributed

Load Balanced Queues

PUB foo

NATS
Client

NATS
Client

NATS
Client

NATS
Client

SUB foo workers

Randomly distributed

Load Balanced Queues

PUB foo

NATS
Client

NATS
Client

NATS
Client

NATS
Client

SUB foo workers

Randomly distributed

Wildcards

PUB foo.bar

NATS
Client

NATS
Client

NATS
Client

NATS
Client

SUB foo.bar workers

NATS
Client

SUB >

Wildcards

NATS
Client

NATS
Client

NATS
Client

NATS
Client

SUB foo.bar workers

NATS
Client

SUB >

PUB foo.bar

Wildcards

NATS
Client

NATS
Client

NATS
Client

NATS
Client

SUB foo.bar workers

NATS
Client

SUB >

PUB foo.bar

Wildcards

NATS
Client

NATS
Client

NATS
Client

NATS
Client

SUB foo.bar workers

NATS
Client

SUB >

PUB foo.bar

Wildcards

NATS
Client

NATS
Client

NATS
Client

NATS
Client

SUB foo.bar workers

NATS
Client

SUB >

PUB foo.bar

NATS
Client

SUB foo.*

Wildcards

NATS
Client

NATS
Client

NATS
Client

NATS
Client

SUB foo.bar workers

NATS
Client

SUB >

PUB foo.bar

NATS
Client

SUB foo.*

Wildcards

NATS
Client

NATS
Client

NATS
Client

NATS
Client

SUB foo.bar workers

NATS
Client

SUB >

PUB foo.bar

NATS
Client

SUB foo.*

Wildcards

NATS
Client

NATS
Client

NATS
Client

NATS
Client

SUB foo.bar workers

NATS
Client

SUB >

PUB foo.bar

NATS
Client

SUB foo.*

Wildcards

NATS
Client

NATS
Client

NATS
Client

NATS
Client

SUB foo.bar workers

NATS
Client

SUB >

PUB foo.bar

NATS
Client

SUB foo.*

Wildcards

NATS
Client

NATS
Client

NATS
Client

NATS
Client

SUB foo.bar workers

NATS
Client

SUB >

PUB foo.bar

NATS
Client

SUB foo.*

Tip: Do not assume the
audience of a message!

Performance,
Scalability, and
Resilience

Performance

18 million messages per second with one server, one data stream.
Up to 80 million messages per second per server with multiple data
streams.

Performance Decisions

Performance is a part of every decision we make...
✓ Design for scale
✓ Careful analysis of the fastpath

Just as important is what NOT to implement...
✕ Message guarantees in core NATS
✕ Transactions
✕ Message Schemas
✕ Last Will and Testament
✕ Message Groups

Availability

The health and availability of the system as a whole is prioritized
over servicing any individual client or server.
✓ NATS server “selfish optimization”
✓ Full Mesh clustering of NATS servers
✓ Server and client connections self heal

...creates a NATS dial-tone, always on, always available.

Simplicity

● Single binary

● 7.8 MB docker image with no external dependencies

● “Text-based” protocol with just a handful of verbs

● Low Configuration

✓ Clients only need a url and credentials

✓ Servers auto-discover

✓ You can share configuration files amongst servers

● Simple and Straightforward API

Auto-Discovery

● Auto-Discovery

✓ Automatically Exchange Server Topology

✓ Server ⇆ Server

✓ Server → Client

● No configuration updates

✓ Failover to auto-discovered servers

● Great for rolling upgrades

Delivery Modes

Delivery Modes

NATS supports two delivery modes:
● At most once (Core)

✓ No guarantee of delivery - messages can be lost - applications must
detect and handle lost messages

● At least once (Streaming)
✓ A message will always be delivered, but in certain cases may be

delivered more than once

✕ Exactly once is arguably unnecessary, always complex, and inevitably slow.

Delivery Modes

NATS Streaming is a data streaming system atop core NATS

● At-least-once delivery
● Replay by time or sequence number
● Last/initial value caching
● Durable subscribers
● Rate matching per subscriber
● Memory, File, or Database storage
● High Availability through fault tolerant or clustered configurations
● Scale through partitioning

NATS Server
aka. core NATS

NATS Server

● Written in Go
● At-most-once delivery guarantees

○ No persistence of messages
● Extremely high performance
● TLS support
● Authorization and Authentication
● Full-mesh one hop clustering for HA
● Auto discovery via gossip

NATS Server

Main project repo name has changed recently:

Before:
https://github.com/nats-io/gnatsd

Now:
https://github.com/nats-io/nats-server

https://github.com/nats-io/gnatsd
https://github.com/nats-io/nats-server

NATS Clients

The clients repositories have also changed:

Before:
https://github.com/nats-io/go-nats

Now:
https://github.com/nats-io/nats.go

https://github.com/nats-io/go-nats
https://github.com/nats-io/nats.go

NATS Official Clients

NATS Client API: Go

Receives all the messages
published on the greetings
topic that have been
published since it
registered interest.

Full mesh NATS Cluster

NATS
Client

NATS

NATSNATS

NATS
Client

Full mesh NATS Cluster

NATS
Client

NATS

NATSNATS

NATS
Client

Full mesh NATS Cluster

NATS
Client

NATS

NATSNATS

NATS
Client

Full mesh NATS Cluster

NATS
Client

NATS

NATSNATS

NATS
Client

NATS Streaming
aka. STAN

NATS Streaming (STAN)

● Supports at-least-once delivery guarantees
https://github.com/nats-io/nats-streaming-server

● Persistence of messages / ‘Message replay’
● Raft based replicated log for clustering
● Protocol based on NATS Request/Reply

https://github.com/nats-io/nats-streaming-server

STAN Clients

The nats-streaming clients repositories have also changed:

Before:
https://github.com/nats-io/go-nats-streaming

Now:
https://github.com/nats-io/stan.go

https://github.com/nats-io/go-nats-streaming
https://github.com/nats-io/stan.go

STAN Official Clients

STAN Client API: Go

Receives all the messages
ever published on the
greetings topic.

STAN on top of NATS

NATS
Streaming
Client

NATS

NATSNATS

NATS
Streaming
Server

‘cluster-A’

NATS
Streaming
Server

‘cluster-A’

NATS
Streaming
Server

‘cluster-A’

The NATS v2 Release

NATS v2

Biggest release of the project since it started.

NATS v2

Expands the security and
project capabilities of the
server to become a core
component used to build a
global communication
network.

https://synadia.com/ngs

NATS v2

● Gateways, Super clusters & Leafnodes
● New clustering protocol

○ Client protocol is 100% backward compatible
● Accounts isolation
● Like containers for messaging
● NKEYS (ed25519 based keys)
● Decentralized authorization with JWTs
● System Accounts
● Graceful shutdown

● TLS certs DN/SAN based auth

Accounts

● Accounts are isolated communication contexts allowing secure
multi-tenancy

● Bifurcate technology from business driven use cases
✓ Data silos are created by design, not software limitations

● Easy, Secure and Cost Effective
✓ One NATS deployment for operators to manage
✓ Decentralized - organizations can self-manage

● Share data between accounts
✓ Secure Streams and Services
✓ Only mutual agreement will permit data flow

Streams & Services

Service: A secure RPC endpoint
- Export a service to allow other accounts to import
- Import a service to allow requests to be sent and securely, seamlessly, and

anonymously to another account

Stream: Data flow between accounts
- Export a stream to allow egress
- Import a stream to allow ingress

Zero client configuration or client API changes!

Streams & Services
accounts {
 synadia {
 users = [
 {user: nats, password:
$2a$10$BYItxVAGPCbHakeKXegN7uGNJQB45p5sQT4D5Jrlb/gOI13Orx.RK}
 {nkey:
UC53TQCCXLUYSYTJ7PHSHDAORV6OSON7SNZQAWVMJUGM5JC3GR2AA
D2M}
]

 # For sharing streams and services with others.
 exports = [
 # Network status updates available for anyone.
 {stream: "cloud.network.status"}

 # Service to request developer statistics
 {service: "private.devstats", accounts: [CNCF]}
]
 }
}

Streams & Services
accounts {
 synadia {
 users = [
 {user: nats, password:
$2a$10$BYItxVAGPCbHakeKXegN7uGNJQB45p5sQT4D5Jrlb/gOI13Orx.RK}
 {nkey:
UC53TQCCXLUYSYTJ7PHSHDAORV6OSON7SNZQAWVMJUGM5JC3GR2AA
D2M}
]

 # For sharing streams and services with others.
 exports = [
 # Network status updates available for anyone.
 {stream: "cloud.network.status"}

 # Service to request developer statistics
 {service: "private.devstats", accounts: [CNCF]}
]
 }
}

NKeys and JWTs

A new NATS Identity authentication and authorization system.

● ED25519 based encoded keys made simple
○ Fast and resistant to side-channel attacks
○ Sign and Verify

● NATS servers never see private keys
○ Server sends nonce during connect, verifies client

signatures
● JWT associate users with accounts and permission sets

JWTs

JWTs are used to represent identities in NATS
● User, Account, Cluster, or Server
User JWTs Contain
● Account NKey (Issuer)
● Public NKey (Subject)
● Friendly Name
● Permissions
● Limits
● Not Before and Expiration

JWTs

{

 "jti": "3Y2OIRCSQLHOZI2KWXPS7JCRIR5BT5ZGZ5G74VHFCMUJAZUPCYCA",

 "iat": 1544140248,

 "iss": "ADQO262SKHLYIQTIBU3VG2K4GWRVO4TXYYJDHKI7QBMWYW6HACLQZIVB",

 "name": "Waldemar",

 "sub": "UCZRG6WDXWMIKDPLUMMRS2UAO2NSA5GOU2WCTXQLK7TRUWLLQ2CAXY7M",

 "type": "user",

 "nats": {

 "pub": {

 "allow": [

 "public.>"

]

 },

 "sub": {

 "deny": [

 "private.>"

]

 }

 }

}

NATS Super Cluster

NATS Super Cluster

NATS Super Cluster

NATS Super Cluster

NATS Super Cluster

NATS Super Cluster + Leafnodes

NATS Super Cluster + Leafnodes

NATS Super Cluster + Leafnodes

NATS Ecosystem

NATS Operator

The recommended way of running NATS on Kubernetes
https://github.com/nats-io/nats-operator

https://github.com/nats-io/nats-operator

NATS Prometheus Exporter

- Maintained by the NATS team
https://github.com/nats-io/prometheus-nats-exporter

- Core NATS + NATS Streaming support

https://github.com/nats-io/prometheus-nats-exporter

NATS Account Server

https://github.com/nats-io/nats-account-server

https://github.com/nats-io/nats-account-server

Demo
Deploying a NATS v2 Super
Cluster on Kubernetes with the
NATS Operator

Questions?

Thanks!

