
Ingress V2 and
Multi-Cluster Services
Rohit Ramkumar (rramkumar1@)
Bowei Du (bowei@)

1

After the survey from 2018, we look at the landscape of what Ingress was trying to
fulfill:

● Describe L7 proxy-based load balancing (Note: could be extended to L4)

Does this make sense in the core Kubernetes?
● Would there be a project that we can point to and say “use that”

Could we have a strong statement on portability and featureset?
● Option: It will not be portable.
● Option: We standardize on a given implementation and wait for

convergence…

The gaps in featureset/portability between cloud infrastructure and proxies will persist
for quite some time:

● It is likely infeasible for clouds to allow for the kind of customization and
expressiveness of a self-managed proxy

● However, we do see convergence, but it is slow.

We also had a newer technology, that of service meshes, that have different
deployment model, featuresets, but intersect the space.

Next “Ingress” API

Clouds
GCP,
AWS,
Azure,
...

Proxies
nginx,
envoy,

haproxy,
...

Mesh

Note: reference systems below were chosen for illustrative purposes, not meant to be
exhaustive.

Next “Ingress” API

Challenges: portability, expressiveness, features

Lots of APIs now in this space.

What can we can learn from them?

Decompose each of these model into key attributes.

I know there are a lot of nuances, such as support features. But for the purposes of
this presentation, we are focusing on the big picture.

self-service: a single developer can define and configure all aspects of the frontend
(TLS termination, protocols, etc) and the backends.
single-role: single dev
simple: just one resource to understand

API models: Ingress (Beta)

k8s.Ingress

host.com/path
...

k8s.Service

k8s.Service

Key attributes: self-service, single-role, simple

GA codifies some common practice, fixes bugs and adds more flexibility to the
backends.

Ingress class: which controller manages the ingress, akin to storage class
Currently in discussion: more flexibility in backends that can be used.

API models: Ingress GA (proposed)

k8s.Ingress

host.com/path
...

k8s.Service

k8s.Servicek8s.IngressClass

cloud.Bucket

Key attributes: “flavor” of Ingress via class, heterogenous
backends.

Popular model istio:

Istio is a service mesh, but the same resources are intended to be used with “traffic
ingress” purposes

Separate “proxy infra” from app description
Traffic splitting
Rich feature set

API models: Istio

Gateway

k8s.Service

k8s.Service

istio.VirtualService
host.com/path

istio.VirtualService

istio.DestinationRule

istio.DestinationRule
host
match

subset

...

Key attributes: Separate roles for proxy infrastructure,
application definition; rich feature set based on Envoy

Another interesting API model:

IngressRoute -- recursive model

API models: IngressRoute

contour.IngressRoute

foo.com
bar.com

k8s.Service

contour.IngressRoute

foo.com/path
...

k8s.Service

k8s.Service

subset

contour.
IngressRoute

Key attributes: Separate roles, recursive delegation +
composability, additional features such as traffic splitting.

Some other interesting API models

API models: Others

Lots of annotations for features (Everybody)

Decorators on k8s.Service instead of k8s.Ingress (Ambassador)

Use Custom Resources (Gloo)

Ingress was first designed, focus was on simplicity and single dev.

What have we learned?

Multi-role environments

● Infrastructure vs App dev

How much portability?

● Should be a user choice.

Support future API growth

● Claim: providers/features will converge over time (but quite slowly).

A modest proposal

Warning: this is very early…
Takes from heavily from existing work...

Shape of the resources (model)

Portability and extensibility

Future directions

A modest proposal: the model

Mesh

Cloud LB

Proxy
(deployment)

Infrastructure
Load-balancer

implementation

Router
Application
description

k8s.Service(protocol, host, path)
(protocol, host, path)
...

Backends
Application

implementation

cloud.Bucket

A modest proposal: the model

Infrastructure Router Backends

*Names are temporary

GatewayClass

Gateway

VirtualHost

k8s.Service

cloud.Bucket

VirtualHost

Gateway

GatewayClass Gateway

Gateway

Represents actual instance of LB/proxy
infrastructure, capacity

Protocol termination (<IP:port>, TLS)

Deployment specific
options - e.g. mergeable

Abstracts available
implementations

Gateway - represents the actual instance of an LB

Gateway ↔ VirtualHost

Gateway

foo.com
*.bar.com

VirtualHost

foo.com/path1
foo.com/path2
...

filtering

gateways: [g1, g2]

How to match Gateway and VirtualHost?

● VirtualHost attaches to a Gateway
● Gateway filters VirtualHosts -- wildcard allows for

self-service.

How to match Gateways to VirtualHost?

If we make a direct reference from gateway to virtualhost, this limits the ability to
self-service

request

VirtualHost: Match → Action

host,
protocol,
port

protocol specific
predicate
path == “/foo”

protocol specific
predicate
path ~ “/bar.*”

action

send to service
“foo”

action

reply with 404

...

Match Action

This is a quite generic model that lets us add matchers and predicates later

we can start with the existing very simple matchers (e.g. path-based)
hang other predicates off of this layer

Actions gives us a way to expand the range of possible processing effects later

VirtualHost

VirtualHost
spec:
 routes:
 - http:
 host: "foo.com"
 rules:
 - path: "/"
 backend:
 service: foo-app
 servicePort: www
 - tcp:
 port: 9000
 rules:
 - backend:
 service: tcp-app
 servicePort: my-protocol

type VirtualHost struct {
Routes []Route

}
type Route struct {

HTTP *HTTPRoute
TCP *TCPRoute

}
type HTTPRoute struct {

Host string
Rules []HTTPRouteRule

}
type HTTPRouteRule struct {

// Match
Path string

 ...
// Action
Backend *HTTPRouteActionBackend
StatusCode *HTTPRouteActionStatusCode

 ...
}

<blink> just a sketch </blink>

VirtualHost extensibility

Complex syntax tree -- needs a decorator pattern

● Better API machinery?
● map[string]string vs Raw Objects (inline CRDs) vs CRD link

Work through examples and UX for users

Portability

Now, let’s talk about portability -- where we propose a new strategy should be
pursued.

In terms of portability, we are proposing a slightly different model than what k8s has
done before:

Why?

Lots of k8s implementations have grown up along with k8s: e.g. container runtimes.
Thus, they are easier to bring into line with portable standard.
Storage classes -- have very orthogonal features

proxy implement predate k8s, feature sets are pretty heterogeneous.

What we want is a force that will drive features inwards to the core API.
Annotations have not been very easy (impossible?) to corral among the various
implementations.

Portability

Core API
100% portable

Core

MUST be supported.

Proposal: expanding rings of support.

Core API

-- guaranteed portable across providers
-- really the minimal set necessary to be “an ingress”

Extended API
100% portable IF supported

Portability

Core API
100% portable

Core

MUST be supported.

Extended

Feature by feature.
MAYBE supported, but
MUST be portable.
Part of k8s API schema.

Extended features

-- portable IF supported

Custom API

Extended API
100% portable IF supported

Portability

Core API
100% portable

Core

MUST be supported.

Extended

Feature by feature.
MAYBE supported, but
MUST be portable.
Part of k8s API schema.

Custom

No guarantee for portability,
No k8s API schema.

gravity...

Create “gravity” to pull features into the core

One issue we have seen with the previous ingress -- there is simply no force that
makes annotations uniform, and it’s actually quite hard to chase down all of the
implementations to make sure that the extended features are compatible.

Custom API

Extended API
100% portable IF supported

Portability

Core API
100% portable

Enforcement by conformance
tests.

Extended feature definition
requires self-contained
conformance.

Require all extended features be
checked statically?

gravity...

How to make sure these things are actually portable?

Portability

Custom API

Extended API

Core API

Neato
Feature ®

Ingress
GA

Traffic
splitting

Regex? Rewrite

Future directions

Interesting alternative backends:

● Storage bucket
● Multi-cluster Services

Multicluster Service

Multi-Cluster Services: Use Cases

● Canary - Deploy new version of application in one
Kubernetes cluster in one locality before rolling it out
worldwide.

● Low latency - Users get routed to the application backends
that are closest to them geographically.

● High availability - Users requests are served even if one
cluster holding application backends is completely down.

● Hybrid - Application spans multiple cloud providers or
on-prem

Note: All these use cases are in the context of a global application.

Canary - When shipping a new version, you want to make sure you canary the
version to a locality in order to isolate the changes and verify they work. Once you
have done X amount of verification you need to do, you can slowly roll out the new
version to the rest of your localities.

Low Latency - In most cases, you want to ensure your users experience the lowest
latency when talking to your application backends. This means that a user is Australia
is routed to the backends that are closest to Australia.

High Availability - You want to ensure that users do not experience downtime when
your application infrastructure is broken. If your backends in Australia are down, you
want to ensure that they are still getting served traffic but perhaps from a location that
is a bit further away. In general for an HA application, you are most likely willing to
sacrifice a increase a little bit in increased latency for no downtime for your
customers.

Hybrid - You could have some of your application backends still in on-prem for
business or compliance reasons

Multi-Cluster Services: User Journey

Persona: Admin

● I want L7 load balancing across a global service that is deployed on
Kubernetes clusters.

● I want the ability to add / remove clusters from this load balancing based on
business requirements.

● I want teams in my organization (service owners) to manage their own ingress
traffic but maintain a clear boundary between the “admin” and the
“Kubernetes end user”.

● I want my teams to use a native Kubernetes API to leverage default features
(e.g namespacing, labels) & to reduce the learning curve.

We just looked at some use cases for why you would want multi-cluster services, let’s
look at an example user journey to demonstrate at a high-level how it can be done.

For this user journey we want to highlight the following;
1. These API’s are solving north-south, not east-west. By north-south we mean

traffic that is ingressing / egressing outside of your “service mesh”. East-west
is traffic within your “mesh”.

kind: MultiClusterIngress
metadata:
 name: my-mci
spec:
 template:
 spec:
 backend:
 serviceName: my-mc-service
 servicePort: 80
 rules:
 - host: foo.bar.com

 http:

 paths:

 - backend:

 serviceName: my-mc-service

 servicePort: 80

kind: MultiClusterService
metadata:
 name: my-mc-service
spec:
 template:
 selector:
 app: shopping
 ports:
 - name: web
 protocol: TCP
 port: 80
 targetPort: 80
 clusters:
 - selector:
 matchLabels:
 region: us

Multi-Cluster Services: APIs

From here on, we may reference abbreviate MultiClusterIngress and
MultiClusterService to MCI & MCS, respectively

kind: MultiClusterIngress
metadata:
 name: my-mci
spec:
 template:
 spec:
 backend:
 serviceName: my-mc-service
 servicePort: 80
 rules:
 - host: foo.bar.com

 http:

 paths:

 - backend:

 serviceName: my-mc-service

 servicePort: 80

kind: MultiClusterService
metadata:
 name: my-mc-service
spec:
 template:
 selector:
 app: shopping
 ports:
 - name: web
 protocol: TCP
 port: 80
 targetPort: 80
 clusters:
 - selector:
 matchLabels:
 region: us

Multi-Cluster Services: APIs

Similar to Ingress and Service. Core spec for each is the exact same. Namely, we see
the same vanilla virtual hosting specification for MCI and service selector + port
specification for MCS.

In fact, this proposed API simply embeds the standard “v1” Ingress & Service inside of
the “template” field. Benefit of this is its very pluggable. As Ingress and Services
evolve, their older counterparts can simply replaced in a “drag and drop” fashion.

Conceivably, as the API evolves, we could embed the “v2” Ingress & Service.

kind: MultiClusterIngress
metadata:
 name: my-mci
spec:
 template:
 spec:
 backend:
 serviceName: my-mc-service
 servicePort: 80
 rules:
 - host: foo.bar.com

 http:

 paths:

 - backend:

 serviceName: my-mc-service

 servicePort: 80

kind: MultiClusterService
metadata:
 name: my-mc-service
spec:
 template:
 selector:
 app: shopping
 ports:
 - name: web
 protocol: TCP
 port: 80
 targetPort: 80
 clusters:
 - selector:
 matchLabels:
 region: us

Multi-Cluster Services: APIs

Cluster selection is the piece of MCS that is new. We leverage the power of
kubernetes labels to identify which clusters are targeted by a MultiClusterService.

You might be wondering, how are you mapping a set of selected labels to actual
clusters. Well, this is where a “list of clusters” implementation comes in.

Right now, there is an implementation that uses a Kubernetes API server and a
Custom Resource Definition to represent a cluster called “Cluster Registry”. Ideally
how you implement a “list of clusters” is up to you.

MCI

MCS

“Config Source”

app

app

app

app

app app

MCI

MCS
Admin

Developer Teams

Cluster turnup / turndown

app

app

app

app

app

app

app

app

app

app

app

app

Multi-Cluster Services: Workflow

MCI

MCS

“Config Source”

app

app

app

app

app app

MCI

MCS
Admin

manages

Developer Teams

Cluster turnup / turndown

app

app

app

app

app

app

app

app

app

app

app

app

Multi-Cluster Services: Workflow

Need some place to store MCI & MCS. This is where the “Config Source” comes in.
This is your standard kubernetes API server.

Ideally, an administrative figure maintains the API server for the “Config Source” since
it is infrastructure.

MCI

MCS

“Config Source”

app

app

app

app

app app

MCI

MCS
Admin

manages manages

Developer Teams

Cluster turnup / turndown

app

app

app

app

app

app

app

app

app

app

app

app

Multi-Cluster Services: Workflow

You need k8s clusters to run your workloads. Ideally, the administrative figure also
managed turnup / turndown of individual clusters since clusters are also
infrastructure.

Note that nothing is precluding from having the config source be on the same cluster
as the application backends.

Thing that is omitted here is a “list of clusters” (e.g cluster registry)

MCI

MCS

“Config Source”

app

app

app

app

app app

MCI

MCS
Admin

manages manages

Developer Teams

Cluster turnup / turndown

app

app

app

app

app

app

app

app

app

app

app

app

manage workloads

manage primitives

Multi-Cluster Services: Workflow

Ideally individual developers / teams manage their own workloads and their own
ingress

Multi-Cluster Services: FAQ

● Why not have a MultiClusterDeployment? That alleviates
the need for having to do the manual work of replicating
their workload across clusters.

○ Do not want to be opinionated on how users deploy
their workloads. It’s not really the spirit of what the
API is trying to provide.

○ Best practices in this space are divided, no one-size fits
all approach.

Notes from federation docs:

Federation V2 is designed to allow users to deploy services and workloads to multiple clusters
from a single API.

Use cases for fed v2:

● distribution of applications, services and policy to multiple clusters
● migration of applications and services and their storage between clusters
● disaster recovery for those applications and services

As Federation matures, we expect to add features dealing with storage, workload placement,
etc.

There is no reference architecture (yet) for how to accomplish north-south load balancing
across services using Istio API’s. However, there is potential for the existing API’s to support
the use case. It’s a matter of waiting and seeing.

Multi-Cluster Services: FAQ

What about Federation v2?

● Multi-cluster models and assumptions are slightly different.

● Federation v2 is opinionated on cross-cluster DNS & SD, deployment of
workloads, etc.

● Federation v2 is trying to target a much wider set of use cases, multi-cluster
services are an “à la carte” offering

Where does Istio’s Multicluster story fit?

● Potential for existing API’s to support use case.

Conclusion

Conclusion

• Initial KEP proposal to come shortly, although
we have to get V1 GA wrapped up first.

• Feedback from community is key
• Reference implementation

Thanks!

Rohit

rramkumar@google.com

github:rramkumar1

Bowei

bowei@google.com

github:bowei

mailto:rramkumar@google.com
mailto:bowei@google.com

