
Meshing Monolith
to Microservices

Leo Liang
@leozc

$ whoami

@leozc

https://www.linkedin.com/in/leoliang

https://github.com/leozc

Machine Learning Platform
Ground Truth

If a startup can be described in (python) code....

How startup works

Scale enables faster and more
meaningful iterations

To Maximize per iteration progress
=> Scale Teams (Quality + Quantity)

=> Scale Architecture

“ Any organization that
designs a system (defined
more broadly here than just
information systems) will
inevitably produce a design
whose structure is a copy
of the organization’s
communication structure.

— Conway’s law 1967

How the story began
• Journey started in the beginning of 2016
• High growth Seattle unicorn (Offerup)

• 100% native on AWS => cluster neutral

• Magnitude of changes:

• How?
• Service Mesh driven Microservice architecture evolution

2016 2017-2018

Number of Engineers 10 100+

Services 1 monolith 40+ services

Req/Daily 300M 2B+

What is LinkerD (v1)
• A feature rich proxy

• Built on Twitter Stack

• Dtab (Delegation tables) is DSL for routing

• NamerD DNS for Service Mesh

• Powerful plugin support
• JVM languages (Java, Scala)

• For clarity - pseudo code in python

https://linkerd.io/1/advanced/dtabs/
https://linkerd.io/1/advanced/namerd/

This talk is about...
1. The architecture evolution from monolithic to microservice

driven by service mesh

2. Pragmatic and systematic solution

3. Imperfect solution but respects to the legacy

Agenda
1. Edge - Split the world into TWO
2. Core of Mesh - Service to Service Communication

3. Observability

4. Conclusion

Split the world into TWO
• What is Edge Serrvice?
• Edge = Nginx + (Linkerd + Customized Plugins)

Split the world into TWO
Edge = Nginx + (Linkerd + Customized Plugins)

Split the world into TWO
Nginx Layer

• Police and security (CSRF validation)

• Header Normalization and injection (region)

• URL Normalization

/api/message/foo/bar?a=123

/h1/us-east-1a/prod/foo/bar?a=123

LinkerD Layer

• URL Interpreted by Namerd Dtab
• NamerD → Mesh DNS

• /h1/us-east-1a/prod/foo/bar?a=123 =>

$host:$port/foo/bar?a=123

(Note: Routing/Discovery in later section)

Split the world into TWO

Edge LinkerD - Authentication

1. Transition
• Legacy Client using cookie

• Newer Clients using JWT

2. Ensure downstream services to have
trusted user identify

3. Inject per user-specific context (e.g.,
user group)

Edge LinkerD - Authentication

A LinkerD Identifier Plugin

Split the world into TWO

ExperimentDecider
• Experiment, Service rollout
• Per service based
• Split traffic based on some criterial

• User Id, group

• Controlled rolling out
/h1/dc1/prod/messaging

=> 0.5 * /h1/dc1/prod/messaging &
0.5 * /h1/dc1/canary/messaging

Edge LinkerD - Canary on Edge

Edge LinkerD - Canary on Edge

Canary helps the roll out!
Controlled rolling out

/h1/dc1/prod/messaging
=> $r1 * /h1/dc1/prod/messaging &

$r2 * /h1/dc1/canary/messaging

Summary: Split the world into TWO

• Pros
• Horizontal scale ready
• Flexibility Nginx + L5D
• Full observability

• Cons
• Double passing for all inbound traffic
• (Free) Nginx lacks of control plate unlike L5D,

but L5D provides some level of controlling
features.

Let’s get into the mesh!

Service to Service Communication

• Supported protocols
• HTTPv1
• Thrift

• Why ingress/egress through
LinkerD?
• Connection policy control

(retry/backout)
• Connection pool
• Circuit breaking
• Etc...

Service to Service Communication

Service to Service Communication

Sidecar

• How services talks to each
other?
• Discovery v1

• Consul based registry
• Linkerd Uses consul
• Ingress point is ELB

• Discover v2
• Peer to Peer
• Client based LB

Service to Service Communication

• Discovery v1
• Each service fronted by an ELB
• DTab

#/io.l5d.consul/dc/$env/$service_name
• Namerd uses this information and query consul

• $service_name maps to an ELB in consul

Service to Service Communication -
Discovery V1

Service to Service Communication -
Discovery V1
• All GOOD!
• But we can do better!

• DNS
• Features in L5D is per host

• e.g. Retry budget
• Single point of failure (LB level)

• Imbalance routing and load

• Discovery v2 - SRV based routing
• Per node
• Peer to Peer

• Powerful LB algorithms
• Heap + Least Loaded, Power of Two Choices (P2C) + Least Loaded, Power of Two Choices (P2C) +

Peak, EWMA Aperture + Least Loaded

Service to Service Communication -
Discovery V2

https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/ResourceRecordTypes.html

Service to Service Communication -
Discovery V2

• What is SRV (RFC 2782)
• CName for a GROUP of machines
• Format: Priority Weight Port Host/IP
• Example: 10 5 80 172.0.0.4

Service to Service Communication -
Discovery V2

• Nodes automatically announce to FleetDB (Announcer)
• Fleet Sync Svc registers to Route53 as an SRV record
• NamerD returns all IPs of a SRV record.
• LinkerD LBs locally
• Fleet Sync Svc

• Monitor FleetDB
• hocks up signals
• Rip off outdated info

https://aws.amazon.com/route53/

Service to Service Communication -
Discovery V2

• Consistency - Eventual
• Availability - Strong
• Fault tolerance - Strong

DTab
/#/io.l5d.dnssrv/dc1/$env/$service_name.foo.com

• $service_name.foo.com is SRV record

Service to Service Communication -
Discovery V2
• Discovery v2 - SRV based routing

• Peer to Peer
• DTab

/#/io.l5d.dnssrv/dc1/$env/$service_name.foo.com
• $service_name.foo.com is SRV record

New Connection between
two production services
reduced significantly due
to proper connection
pooling via L5D

https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/ResourceRecordTypes.html

Discovery V1 vs Discovery V2

Discovery V1 vs Discovery V2

Discovery V1 Discovery V2

Observability

Observability

Observability
• 500K metrics
• 10 seconds intervals
• 40+ services
• Some metrics published to Cloudwatch which integrated with

alarm flow.

Observability - Gallery
Traffic shift from an old build to a new one during deployment

A dashboard shows the incoming traffic breakdown by sources,
with each color indicating a source of service

Observability - Gallery

Conclusion
1. All inbound/outbound traffics are observable by L5D

2. All traffic between any two nodes are controllable by L5D using Dtab

3. All Service communication is point-to-point

4. Language agnostic traffic management

5. JVM 9+ - better GC & solved majority of long tail latency issues

Thank you!
@leozc

