KubeCon | CloudNativeCoi

e ——) ,.;,; , R y -; ""..
e R R Y C % A MAY

| q 4 ' ‘J
3*! l“‘.: .’ \" gJ - A\J !,

Embracing Upstream Kubernetes in
Web Scale Organization

Lei Zhang, Alibaba & Jun Chen, Ant Financial

(- Alibaba Cloud | Q&%

Worldwide Cloud Services Partner

 Background
* Hard Multi-tenancy Architecture
* The “Container Headache”?

 Workload Management

 Workload Predictability
» Scalability Verifying & Trouble Shooting

 Dance with Upstream

Backg round (-) Alibaba Cloud | QR$

Worldwide Cloud Services Partner

Alibaba Group

e Our team serves both Alibaba Cloud

.
o °
° -
o LS
A .
° .
o LS
o LS
o .
° -
-
¢ .
.
-
.
.
*s
* ||
.
.
LS
.
.
-
LS
.
-
.
.
*
LS
LS
.
.
-
LS
.
.
-
LS
.
-

e Alibaba Cloud: managed K8s service

H)E'FM 0 OPERATOR
~A FRAMEWORK

* Alibaba Group: several internal K8s
cluster (5k~10k nodes each) to serve

container =] |
world’s largest e-business platform

*
*
&
*
*
&
L4
¢
*
&
&
&
<
*
*
4
L4
&
*
*
4
L4
*
*
4
L4
<&
<
& 2
*
<&
L4
&
*
*
*
&
&
*
&

 The main topic today :-)

Architecture - Large Cluster to Serve All Tenants (=D Alibaba Cloud | 255

Worldwide Cloud Services Partner

Internal App Mgmt System Search Engine, Serverless, 2nd party
(Dashboard, Resource Planning, Alibaba ADs, Logistics, product, 3rd party
Singles Day Sale) middleware system

Declarative API/GitOps/Kustomize CRDs + Operators

Alibaba Kubernetes Infrastructure

Developer/PaaS/
DevOps system

Customized Controllers Admission Hooks

Customized Scheduler
Aggregator

kube-controller-manger kube-apiserver

Alibaba ECS Alibaba ECS Alibaba ECS Elastic
Bare Metal Instance Bare Metal Instance Bare Metal Instance Resource
CNI

Pool
HEEE HEEE HEEE
: : : Logging

Cloud Provider

TS TS e RETE

“Virtual Cluster” Hard Multi-tenancy Model G2 Alibaba Cloud | 5¢5)

Worldwide Cloud Services Partner

VN: virtual node

 Per “tenant” per “tenant cluster”

Tenant A

!

(Nodel O

* Every “tenant cluster” is composed by
a dedicated K8s control plane and
several “virtual nodes”

: Unified
[. Scheduler

: \[P{TA)] [P(T B}]

e virtual nodes are “virtualized” from real

nodes by VN-agent (a proxy of kubelet) @ -/
g— Vi Tenant
R—] A Controller

 So tenants workloads could
share the same “super” K8s

cluster
T £ Node 2/
« Tenant control plane do not have kube- Tenant B ; VN-agent Admin/PaaS
scheduler o B Kubelet .
p(TA)| [P(T8) '
=,

I

* Unified Scheduler to achieve high
resource utilization by job co-location

Pod Read
Privilege Only

Please check this upstream design doc for more details Open source at KubeCon NA 2019!

https://docs.google.com/document/d/1EELeVaduYZ65j4AXg9bp3Kyn38GKDU5fAJ5LFcxt2ZU/edit

“Container Headache” (-] Alibaba Cloud | Q55

Worldwide Cloud Services Partner

e Before 2018
“Rich Container” _ _
- Anti-container patterns
e “Rich Container”
* You can find everything inside the container
e app, start/stop scripts, sshd, log, monitoring, cache, VIP, DNS, proxy, service mesh agent ...

 PID 1 process is Systemd

 Aha, it’s basically a container but acts as a VM

MonolithiQ
OJava Systela:> * Traditional operating workflow

- Start container -> SSH into container -> Start the app

- Log files & user data are distributed everywhere in the container

* In-house orchestration & scheduling system

https://pouchcontainer.io

Fix “Container Headache”

Live
Upgrading
Sidecar

Ops
Sidecar
(agent)

Assist
Sidecar
(cache)

- Shared volume

- Different resource QoS

o Fine-grained litecycle control
& health check

(- Alibaba Cloud | Q&%

Worldwide Cloud Services Partner

apiVersion: vl
kind: Pod
spec:
containers:
— env:
— name: ali_start_app
value: "no”
name: main
lifecycle:

exec: App start script ;

command:

— /bin/sh

- —C

- for 1 in $(seq 1 60); do [—-x /home/admin/.start] && break ; sleep 5
; done; sudo —u admin /home/admin/.start>/var/log/kubeapp/start.log 2>&1:
&& sudo —u admin /home/admin/health.sh>>/var/log/kubeapp/start.log 2>&1 :

command': App stop script
— /bin/sh 5
- —C

—— sttt —————
command: Health check |
— /bin/sh
- —C
S —.sudo. —-u.admin./home/admin/health.sh>/var/log/kubeapp/health.laog. 2>&1
initialDelaySeconds: 20
periodSeconds: 60
timeoutSeconds: 20

Sidecar Operator C-D Alibaba Cloud | Q65

Worldwide Cloud Services Partner

* \When we have thousands sidecars, we’ll need:

e A SidecarSet CRD:

Admission Hook

 Describe all sidecars need to be operated

* A SidecarOperator:

1. Inject sidecar containers to selected Pods

2. Upgrade sidecar containers following rollout
policy when SidecarSet is updated

3. Delete sidecar containers when SidecarSet is
deleted

Workloads Management C-) Alibaba Cloud | Q68

Worldwide Cloud Services Partner

Lessons learned:
 Kubernetes Application = YAIVIL

« Managing YAML files in large cluster is a

N gt e
 Kubernetes Workloads = Operating Model
o StatefulSet Pre-defined models of
* Rollout Polic
° Dep|oyment y L
- Lessons learned:
* Instance Recovery
e Job ~* They are well defined & convenient;
SaiCH BERIEY .t maynotfittoall cases though ... |
e Crondob

Blue-Green Deploy

e DaemonSet Canary Deploy

GitOps + Kustomize = Awesome! | QQP

Worldwide Cloud Services Partner

app-foo
.Cluster
— base
- 100-namespace . yaml
- 200-rbac.yaml
300-deployment . yaml

overlays
cluster-1 Kustomize

------- T-- 300-deployment . yaml
- kustomization.yaml
cluster-Z
300-deployment.yaml ---
kustomization.yaml

apiVersion: apps/vl apiVersion: apps/vl
kind: Deployment kind: Deployment
metadata: metadata:

name: app-foo name: app-foo

namespace: app-foo namespace: app-foo
spec: spec:
replica: 1 replica: 3

Git + Base YAML + patch YAML = Easy YAML mgmt in large K8s cluster

Kruise: Kubernetes Workloads Advanced (- Alibaba Cloud | (265

Worldwide Cloud Services Partner

* A fleet of customized CRD + controllers that operate applications at web scale.
* Pluggable, repeatable and Kubernetes native (Declarative API + Controller Pattern)

* 100 % Open Source (very soon!)

kube-apiserver

7

Deployment StatefulSet InplaceSet BroadcastJob

Kruise - InplaceSet - OQ%

Worldwide Cloud Services Partner

* InplaceSet: Deployment StatefulSet InplaceSet
* Predictability is critical in web-scale cluster Ordering No Yes Yes
« We prefer In-Place-Upgrade, because with Naming Random Ordered Ordered
thousands of pods reshuffled across cluster: S s s o Ves
* Topology changes, image re-warm, Retry on other nodes No No Yes
unexpected overhead, resource allocation , , _
h Rollout policy Rolling, Rolling, On- Rolling, On-delete,
churn ... Recreate delete In-place
P R Y, N Y,
» Generally, we ¥ StatefulSet, but: ause/Resume °S © °S
. _ _ . Partition No Yes Yes
» SS will still tear down pods during rolling
upgrade Max unavailable Not yet Yes Yes
* Less rollout strategy than Deployment iteFostiupaateinook NE INO Yes

InplaceSet = A in-place “StatefulSet” with more rollout strategies

Scalability Matters (- Alibaba Cloud | QG

Worldwide Cloud Services Partner

e Scalability boundary of upstream K8s (v1.14) e Scalability goal in our web-scale cluster

. No more than 5k nodes More than 10k nodes
. No more than 150k total pods * More than 300k pods

. No more than 300k total containers Non-goal:

. No more than 100 pods per node * Total containers & pods per node

* Question:

* How to discover scalability issue in 10k nodes cluster?

Performance Benchmark Toolkit C-D Alibaba Cloud | Q46§

Worldwide Cloud Services Partner

+ kubemark with HTTP interface

Hollow-Node Pod ' ' :
O | | Production Cluster | . Hollow-Node Pods
O Business Pod | |
! I
: master | cmd/kubemark/hollow-node.go
l I
D Business Node ~ _ _ __ _:_ : : . . .
e | S NIy g -» Taint and drain nodes for perf test, and run it
O O
g I Wy . |
2 s . o\ ” ‘ : hollow-kuBeletfl s uuas . .]
Y : O Q , nollow-praxy * Typical test cases in 10k nodes cluster:
"I 7) | \) : :
:‘ Perf master (———\ i ot o o Start up time during scaling pods
OO -\ [F%
I . . .
. | Time of creating and deleting pods
N kubelet :
- /o + Pod listing RT
Perf Test Cluster ~=====p=-=-="" | od listing
Lo e e e e I

 Failure counts

curl -X POST -H "Content-Type: application/json” \
oW to run? 'https://k8s-performance-toolkit.alibaba-inc.com/api/kubemark/test" \

-d '{"test_focus":"\\[Feature:Performance\\]","test_skip":"handle","node_count":10000,"pods_per_node":30}'

http://cmd/kubemark/hollow-node.go

Discover Performance Bottlenecks C-) Alibaba Cloud | Q45

Worldwide Cloud Services Partner

Concurrency, locking, data store

<l ol ¢ .

High pressure caused by large

, .
< I B iy

. : |

Our own implementation, no worries :-) > @ Scheduler | @ Kubelet

. @ Controller Manager _.__g Service Proxy

Large amount of lister & watcher

Fix Performance Issue - etcd | QR

Worldwide Cloud Services Partner

* Periodic commit operation does not block concurrent read transactions: etcd-io/etcd#9296

* Fully allow concurrent large read: etcd-io/etcd#9384

* Improve index compaction blocking by using a copy on write clone to avoid holding the lock for the traversal of the entire index:
etcd-io/etcd#9511 :

* Improve lease expire/revoke operation performance: etcd-io/etcd#9418

* Use segregated hash map to boost the freelist allocate and release performance: etcd-io/bbolt#141

« Add backend batch limit/interval fields: etcd-io/etcd#10283

- Benchmark:
* 100 clients, 1 million random key value pairs, 5000 QPS
 Completion time: ~200s

* Latency: 99.9% in 97.6ms

https://github.com/etcd-io/etcd/pull/9296
https://github.com/etcd-io/etcd/pull/9384
https://github.com/coreos/etcd/pull/9511
https://github.com/etcd-io/etcd/pull/10283
https://github.com/etcd-io/bbolt/pull/141
https://github.com/etcd-io/etcd/pull/10283

Fix Performance Issue - kube-apiserver G2 Alibaba Cloud | %85

Worldwide Cloud Services Partner

- kube-apiserver: indexing, caching & reduce data scale
 Pod List Indexing: ~35x improvement (will be upstream soon)

« Watch Bookmark: k8s.io/kubernetes#7/5474 (New!)

 Cherry pick: k8s.io/kubernetes#14/733 (incremental heartbeat), k8s.io/kubernetes#63606

- Benchmark:
10k nodes, 100K exiting pods, scale 2000 pod

 QPS: 133.3 pods/s, 99 %ile 3.474s

 On going: metrics data will crash Prometheus

https://github.com/kubernetes/kubernetes/pull/75474
https://github.com/kubernetes/kubernetes/issues/14733
https://github.com/kubernetes/kubernetes/pull/63606

We Prefer “non fork” () Alibaba Cloud | QG

Worldwide Cloud Services Partner

e “non fork”

* “fork Keep upgrading with 2 releases lag with upstream

 Lock down on specific K8s release, never upgrade No API change

* In-house/modified K8s API, hide/wrap K8s API . annotations, aggregator, CRD etc

 Bypass K8s core workflow Always respect K8s philosophy
* Bypass K8s interface (CSI, CNI, CRI) * Declarative API & Controller Pattern

 Replace kubelet with some other agent Leverage K8s standard extensibility points

e (NI, CSI, admission hook, initializer, extender etc

Respect kubelet & CRI

AK8S: A Tiger Team to Dance with Upstream (-2 Alibaba Cloud | 2585

Worldwide Cloud Services Partner

Upstream

k8s.io/client-go k8s.io/apimachinery

Developer Relationship

Internal Upstream

Alibaba Cloud AKS8S (mirror of Kubernetes upstream)

O

Hot fix
Enhancement of perf/scale
Testing release

Internal Downstream Tracking master/releases
Ant Financial

Alibaba Kubernetes Infrastructure

' 2] lag fi AK
Alibaba Group versions lag from AK8S

O

Other affiliate E : Customization
companies G eeeeeeeeeeeeereses et 4444444544 £ £ £ £ 5 Feature Implementation

Wrap Up | QQP

Worldwide Cloud Services Partner

* We use K8s as both end user and public cloud vendor

 Container design pattern is the key for web-scale users to migrate APPs to K8s
 Customized workloads is the key for web-scale users to run APPs

* Web-scale Kubernetes cluster is huge, perf testing system is your #1 priority

* Virtual Cluster based hard multi-tenancy model to serve customers

* We fork upstream as “non fork”, it’s also how we serve both internal & public cloud

* Build a small upstream team, it’s fun and rewarding!

N Q‘
w

e KubeCon CloudNativeCon
P

Europe 2019

)

-

y @resouer

