

- Background
- Hard Multi-tenancy Architecture
- The "Container Headache"?
- Workload Management
- Workload Predictability
- Scalability Verifying & Trouble Shooting
- Dance with Upstream

Background

- Our team serves both Alibaba Cloud
 & Alibaba Group
- Alibaba Cloud: managed K8s service
- Alibaba Group: several internal K8s cluster (5k~10k nodes each) to serve world's largest e-business platform
 - The main topic today :-)

Architecture - Large Cluster to Serve All Tenants

Developer/PaaS/ DevOps system

Internal App Mgmt System (Dashboard, Resource Planning, Alibaba Singles Day Sale)

Search Engine, ADs, Logistics, middleware

Serverless, 2nd party product, 3rd party system

Declarative API/GitOps/Kustomize

CRDs + Operators

Alibaba Kubernetes Infrastructure

Customized Controllers (Kruise)

kube-controller-manger

Admission Hooks

Aggregator

kube-apiserver

Customized Scheduler (Cerebellum)

Multi-tenancy Add-on

Alibaba ECS **Bare Metal Instance**

Alibaba ECS **Bare Metal Instance**

containerd kubelet

Alibaba ECS **Bare Metal Instance**

containerd

kubelet

CSI

CNI

Cloud Provider

Logging

Monitoring

Elastic Resource Pool

"Virtual Cluster" Hard Multi-tenancy Model

- Per "tenant" per "tenant cluster"
- Every "tenant cluster" is composed by a dedicated K8s control plane and several "virtual nodes"
 - virtual nodes are "virtualized" from real nodes by VN-agent (a proxy of kubelet)
 - So tenants workloads could share the same "super" K8s cluster
- Tenant control plane do not have kubescheduler
 - Unified Scheduler to achieve high resource utilization by job co-location

Open source at KubeCon NA 2019!

"Container Headache"

- Before 2018
 - Anti-container patterns
 - "Rich Container"
 - You can find everything inside the container
 - app, start/stop scripts, sshd, log, monitoring, cache, VIP, DNS, proxy, service mesh agent ...
 - PID 1 process is Systemd
 - Aha, it's basically a container but acts as a VM
 - Traditional operating workflow
 - Start container -> SSH into container -> Start the app
 - · Log files & user data are distributed everywhere in the container
 - In-house orchestration & scheduling system

Fix "Container Headache"

- Shared volume
- Different resource QoS
- Fine-grained lifecycle control
 & health check

```
apiVersion: v1
kind: Pod
spec:
  containers:
  - env:
   - name: ali_start_app
      value: "no"
   name: main
    lifecycle:
      postStart:
        exec:
                                                                     App start script
          command:
          - /bin/sh
          - for i in $(seq 1 60); do [ -x /home/admin/_start ] && break; sleep 5
            ; done; sudo -u admin /home/admin/.start>/var/log/kubeapp/start.log 2>&1
            && sudo -u admin /home/admin/health.sh>>/var/log/kubeapp/start.log 2>&1
      preStop:
        exec:
                                                                     App stop script
          command:
          - /bin/sh
          - sudo -u admin /home/admin/stop.sh>/var/log/kubeapp/stop.log 2>&1
    livenessProbe:
        exec:
                                                                      Health check
            command:
            - /bin/sh
            - -C
           - sudo -u admin /home/admin/health.sh>/var/log/kubeapp/health.log 2>&1
       initialDelaySeconds: 20
        periodSeconds: 60
        timeoutSeconds: 20
```

Sidecar Operator

- When we have thousands sidecars, we'll need:
- A SidecarSet CRD:
 - Describe all sidecars need to be operated
- A SidecarOperator:
 - 1. Inject sidecar containers to selected Pods
 - 2. Upgrade sidecar containers following rollout policy when SidecarSet is updated
 - 3. Delete sidecar containers when SidecarSet is deleted

Workloads Management

- Kubernetes Application = YAML
- Kubernetes Workloads = Operating Model
 - StatefulSet
 - Deployment
 - Job
 - CronJob
 - DaemonSet

- Pre-defined models of
 - Rollout Policy
 - Instance Recovery
 - Batch Deploy
 - Blue-Green Deploy
 - Canary Deploy

Lessons learned:

 Managing YAML files in large cluster is a nightmare

Lessons learned:

- They are well defined & convenient;
 - may not fit to all cases though ...

GitOps + Kustomize = Awesome!

Git + Base YAML + patch YAML = Easy YAML mgmt in large K8s cluster

Kruise: Kubernetes Workloads Advanced

- A fleet of customized CRD + controllers that operate applications at web scale.
- Pluggable, repeatable and Kubernetes native (Declarative API + Controller Pattern)
- 100 % Open Source (very soon!)

Kruise - InplaceSet

• InplaceSet:

- Predictability is critical in web-scale cluster
 - We prefer **In-Place-Upgrade**, because with thousands of pods reshuffled across cluster:
 - Topology changes, image re-warm, unexpected overhead, resource allocation churn ...
- Generally, we V StatefulSet, but:
 - SS will still **tear down** pods during rolling upgrade
 - Less rollout strategy than Deployment

	Deployment	StatefulSet	InplaceSet
Ordering	No	Yes	Yes
Naming	Random	Ordered	Ordered
PVC reserve	No	Yes	Yes
Retry on other nodes	No	No	Yes
Rollout policy	Rolling, Recreate	Rolling, On- delete	Rolling, On-delete, In-place
Pause/Resume	Yes	No	Yes
Partition	No	Yes	Yes
Max unavailable	Not yet	Yes	Yes
Pre/Post update hook	No	No	Yes

InplaceSet = A in-place "StatefulSet" with more rollout strategies

Scalability Matters

- Scalability boundary of upstream K8s (v1.14)
 - No more than 5k nodes
 - No more than 150k total pods
 - No more than 300k total containers
 - No more than 100 pods per node

- Scalability goal in our web-scale cluster
 - More than 10k nodes
 - More than 300k pods
- Non-goal:
 - Total containers & pods per node

- Question:
 - How to discover scalability issue in 10k nodes cluster?

Performance Benchmark Toolkit

- kubemark with HTTP interface
 - Hollow-Node Pods
 - cmd/kubemark/hollow-node.go
- Taint and drain nodes for perf test, and run it
- Typical test cases in 10k nodes cluster:
 - Start up time during scaling pods
 - Time of creating and deleting pods
 - Pod listing RT
 - Failure counts

Discover Performance Bottlenecks

High pressure caused by large amount of data

Fix Performance Issue - etcd

etcd

- Periodic commit operation does not block concurrent read transactions: etcd-io/etcd#9296
- Fully allow concurrent large read: etcd-io/etcd#9384
- Improve index compaction blocking by using a copy on write clone to avoid holding the lock for the traversal of the entire index: etcd-io/etcd#9511
- Improve lease expire/revoke operation performance: etcd-io/etcd#9418
- Use segregated hash map to boost the freelist allocate and release performance: etcd-io/bbolt#141
- Add backend batch limit/interval fields: etcd-io/etcd#10283
- Benchmark:
 - 100 clients, 1 million random key value pairs, 5000 QPS
 - Completion time: ~200s
 - Latency: 99.9% in **97.6ms**

Fix Performance Issue - kube-apiserver

- kube-apiserver: indexing, caching & reduce data scale
 - Pod List Indexing: ~35x improvement (will be upstream soon)
 - Watch Bookmark: k8s.io/kubernetes#75474 (New!)
 - Cherry pick: k8s.io/kubernetes#14733 (incremental heartbeat), k8s.io/kubernetes#63606
- Benchmark:
 - 10k nodes, 100K exiting pods, scale 2000 pod
 - QPS: 133.3 pods/s, 99 %ile 3.474s
 - On going: metrics data will crash Prometheus

We Prefer "non fork"

• "fork"

- Lock down on specific K8s release, never upgrade
- In-house/modified K8s API, hide/wrap K8s API
- Bypass K8s core workflow
- Bypass K8s interface (CSI, CNI, CRI)
- Replace kubelet with some other agent
- •

"non fork"

- Keep upgrading with 2 releases lag with upstream
- No API change
 - annotations, aggregator, CRD etc
- Always respect K8s philosophy
 - Declarative API & Controller Pattern
- Leverage K8s standard extensibility points
 - CNI, CSI, admission hook, initializer, extender etc
- Respect kubelet & CRI

AK8S: A Tiger Team to Dance with Upstream

Wrap Up

- We use K8s as both end user and public cloud vendor
- Container design pattern is the key for web-scale users to migrate APPs to K8s
- Customized workloads is the key for web-scale users to run APPs
- Web-scale Kubernetes cluster is huge, perf testing system is your #1 priority
- Virtual Cluster based hard multi-tenancy model to serve customers
- We fork upstream as "non fork", it's also how we serve both internal & public cloud
- Build a small upstream team, it's fun and rewarding!

