
Embracing Upstream Kubernetes in
Web Scale Organization

Lei Zhang, Alibaba & Jun Chen, Ant Financial

CONTENT

• Background

• Hard Multi-tenancy Architecture

• The “Container Headache”?

• Workload Management

• Workload Predictability

• Scalability Verifying & Trouble Shooting

• Dance with Upstream

CONTENT

Background

• Our team serves both Alibaba Cloud
& Alibaba Group

• Alibaba Cloud: managed K8s service

• Alibaba Group: several internal K8s
cluster (5k~10k nodes each) to serve
world’s largest e-business platform

• The main topic today :-)

Architecture - Large Cluster to Serve All Tenants

Developer/PaaS/
DevOps system

Internal App Mgmt System
(Dashboard, Resource Planning, Alibaba

Singles Day Sale)

Search Engine,
ADs, Logistics,

middleware

Serverless, 2nd party
product, 3rd party

system

Declarative API/GitOps/Kustomize CRDs + Operators

Customized Scheduler
(Cerebellum)

kube-apiserver

Admission Hooks

kube-controller-manger

Customized Controllers
（Kruise）

Alibaba ECS
Bare Metal Instance

kubelet
containerd

Alibaba ECS
Bare Metal Instance

kubelet
containerd

Alibaba ECS
Bare Metal Instance

kubelet
containerd Logging

Monitoring

Elastic
Resource

Pool

Cloud Provider

CNI
CSI

Aggregator

Alibaba Kubernetes Infrastructure

Multi-tenancy Add-on

• Per “tenant” per “tenant cluster”

• Every “tenant cluster” is composed by
a dedicated K8s control plane and
several “virtual nodes”

• virtual nodes are “virtualized” from real
nodes by VN-agent (a proxy of kubelet)

• So tenants workloads could
share the same “super” K8s
cluster

• Tenant control plane do not have kube-
scheduler

• Unified Scheduler to achieve high
resource utilization by job co-location

“Virtual Cluster” Hard Multi-tenancy Model

Please check this upstream design doc for more details Open source at KubeCon NA 2019!

https://docs.google.com/document/d/1EELeVaduYZ65j4AXg9bp3Kyn38GKDU5fAJ5LFcxt2ZU/edit

“Container Headache”

• Before 2018

• Anti-container patterns

• “Rich Container”

• You can find everything inside the container

• app, start/stop scripts, sshd, log, monitoring, cache, VIP, DNS, proxy, service mesh agent …

• PID 1 process is Systemd

• Aha, it’s basically a container but acts as a VM

• Traditional operating workflow

• Start container -> SSH into container -> Start the app

• Log files & user data are distributed everywhere in the container

• In-house orchestration & scheduling system

“Rich Container”

Monolithic
Java System

https://pouchcontainer.io

Fix “Container Headache”

apiVersion: v1
kind: Pod
spec:
 containers:
 - env:
 - name: ali_start_app
 value: "no”
 name: main
 lifecycle:
 postStart:
 exec:
 command:
 - /bin/sh
 - -c
 - for i in $(seq 1 60); do [-x /home/admin/.start] && break ; sleep 5
 ; done; sudo -u admin /home/admin/.start>/var/log/kubeapp/start.log 2>&1
 && sudo -u admin /home/admin/health.sh>>/var/log/kubeapp/start.log 2>&1
 preStop:
 exec:
 command:
 - /bin/sh
 - -c
 - sudo -u admin /home/admin/stop.sh>/var/log/kubeapp/stop.log 2>&1
 livenessProbe:
 exec:
 command:
 - /bin/sh
 - -c
 - sudo -u admin /home/admin/health.sh>/var/log/kubeapp/health.log 2>&1
 initialDelaySeconds: 20
 periodSeconds: 60
 timeoutSeconds: 20

Pod

APP

Ops
Sidecar
(agent)

Assist
Sidecar
(cache)

Mesh
Sidecar
(proxy)

Live
Upgrading

Sidecar

Shared volume
Different resource QoS
Fine-grained lifecycle control
& health check

App start script

App stop script

Health check

Sidecar Operator

• When we have thousands sidecars, we’ll need:

• A SidecarSet CRD:

• Describe all sidecars need to be operated

• A SidecarOperator:

1. Inject sidecar containers to selected Pods

2. Upgrade sidecar containers following rollout
policy when SidecarSet is updated

3. Delete sidecar containers when SidecarSet is
deleted

Controller

Inject

Upgrade

Delete

Admission Hook

Pod

Pod

Pod

Workloads Management

• Kubernetes Application = YAML

• Kubernetes Workloads = Operating Model

• StatefulSet

• Deployment

• Job

• CronJob

• DaemonSet

• Pre-defined models of

• Rollout Policy

• Instance Recovery

• Batch Deploy

• Blue-Green Deploy

• Canary Deploy

• Lessons learned:
• They are well defined & convenient;

• may not fit to all cases though …

• Lessons learned:
• Managing YAML files in large cluster is a

nightmare

Git + Base YAML + patch YAML = Easy YAML mgmt in large K8s cluster

GitOps + Kustomize = Awesome!

������

���
��

	�����
��

��������������

���� ���������

Kruise: Kubernetes Workloads Advanced

• A fleet of customized CRD + controllers that operate applications at web scale.

• Pluggable, repeatable and Kubernetes native (Declarative API + Controller Pattern)

• 100 % Open Source (very soon!)

kube-apiserver

Deployment StatefulSet InplaceSet BroadcastJob

Pod Pod Pod Pod Pod Pod Pod Pod

Kruise - InplaceSet

• InplaceSet:

• Predictability is critical in web-scale cluster

• We prefer In-Place-Upgrade, because with
thousands of pods reshuffled across cluster:

• Topology changes, image re-warm,
unexpected overhead, resource allocation
churn …

• Generally, we ❤ StatefulSet, but:

• SS will still tear down pods during rolling
upgrade

• Less rollout strategy than Deployment

Deployment StatefulSet InplaceSet

Ordering No Yes Yes

Naming Random Ordered Ordered

PVC reserve No Yes Yes

Retry on other nodes No No Yes

Rollout policy Rolling,
Recreate

Rolling, On-
delete

Rolling, On-delete,
In-place

Pause/Resume Yes No Yes

Partition No Yes Yes

Max unavailable Not yet Yes Yes

Pre/Post update hook No No Yes

InplaceSet = A in-place “StatefulSet” with more rollout strategies

Scalability Matters

• Scalability goal in our web-scale cluster

• More than 10k nodes

• More than 300k pods

• Non-goal:

• Total containers & pods per node

• Scalability boundary of upstream K8s (v1.14)

• 	 No more than 5k nodes

• 	 No more than 150k total pods

• 	 No more than 300k total containers

• 	 No more than 100 pods per node

• Question:

• How to discover scalability issue in 10k nodes cluster?

Performance Benchmark Toolkit

• kubemark with HTTP interface

• Hollow-Node Pods

• cmd/kubemark/hollow-node.go

• Taint and drain nodes for perf test, and run it

• Typical test cases in 10k nodes cluster:

• Start up time during scaling pods

• Time of creating and deleting pods

• Pod listing RT

• Failure counts

Perf master

kubelet

master

curl -X POST -H "Content-Type: application/json" \
"https://k8s-performance-toolkit.alibaba-inc.com/api/kubemark/test" \
-d '{"test_focus":"\\[Feature:Performance\\]","test_skip":"handle","node_count":10000,"pods_per_node":30}'

How to run?

http://cmd/kubemark/hollow-node.go

Discover Performance Bottlenecks

Concurrency, locking, data store

Large amount of lister & watcher

High pressure caused by large
amount of data

Our own implementation, no worries :-)

Fix Performance Issue - etcd

• etcd

• Periodic commit operation does not block concurrent read transactions: etcd-io/etcd#9296

• Fully allow concurrent large read: etcd-io/etcd#9384

• Improve index compaction blocking by using a copy on write clone to avoid holding the lock for the traversal of the entire index:
etcd-io/etcd#9511

• Improve lease expire/revoke operation performance: etcd-io/etcd#9418

• Use segregated hash map to boost the freelist allocate and release performance: etcd-io/bbolt#141

• Add backend batch limit/interval fields: etcd-io/etcd#10283

• Benchmark:

• 100 clients, 1 million random key value pairs, 5000 QPS

• Completion time: ~200s

• Latency: 99.9% in 97.6ms

https://github.com/etcd-io/etcd/pull/9296
https://github.com/etcd-io/etcd/pull/9384
https://github.com/coreos/etcd/pull/9511
https://github.com/etcd-io/etcd/pull/10283
https://github.com/etcd-io/bbolt/pull/141
https://github.com/etcd-io/etcd/pull/10283

Fix Performance Issue - kube-apiserver

• kube-apiserver: indexing, caching & reduce data scale

• Pod List Indexing: ~35x improvement (will be upstream soon)

• Watch Bookmark: k8s.io/kubernetes#75474 (New!)

• Cherry pick: k8s.io/kubernetes#14733 (incremental heartbeat), k8s.io/kubernetes#63606

• Benchmark:

• 10k nodes, 100K exiting pods, scale 2000 pod

• QPS: 133.3 pods/s, 99 %ile 3.474s

• On going: metrics data will crash Prometheus

https://github.com/kubernetes/kubernetes/pull/75474
https://github.com/kubernetes/kubernetes/issues/14733
https://github.com/kubernetes/kubernetes/pull/63606

We Prefer “non fork”

• “non fork”

• Keep upgrading with 2 releases lag with upstream

• No API change

• annotations, aggregator, CRD etc

• Always respect K8s philosophy

• Declarative API & Controller Pattern

• Leverage K8s standard extensibility points

• CNI, CSI, admission hook, initializer, extender etc

• Respect kubelet & CRI

• “fork”

• Lock down on specific K8s release, never upgrade

• In-house/modified K8s API, hide/wrap K8s API

• Bypass K8s core workflow

• Bypass K8s interface (CSI, CNI, CRI)

• Replace kubelet with some other agent

• …

AK8S: A Tiger Team to Dance with Upstream

In house e2e

kubernetes

Internal Upstream

AK8S (mirror of Kubernetes upstream)

syncproposal

k8s.io/apimachineryk8s.io/client-go k8s.io/…

Upstream Engineering

Developer Relationship

Alibaba Kubernetes Infrastructure
2 versions lag from AK8S

Internal Downstream
Ant Financial

Alibaba Group

Other affiliate
companies

Downstream Engineering

bug report,
support

feature request
fork

k8s-e2e

k8s-e2e

Hot fix
Enhancement of perf/scale

Testing release
Tracking master/releases

Customization
Feature Implementation

Upstream

Alibaba Cloud

Wrap Up

• We use K8s as both end user and public cloud vendor

• Container design pattern is the key for web-scale users to migrate APPs to K8s

• Customized workloads is the key for web-scale users to run APPs

• Web-scale Kubernetes cluster is huge, perf testing system is your #1 priority

• Virtual Cluster based hard multi-tenancy model to serve customers

• We fork upstream as “non fork”, it’s also how we serve both internal & public cloud

• Build a small upstream team, it’s fun and rewarding!

@resouer

