
Serverless Compute Platforms

on Kubernetes:

Beyond Web Applications

Alex Glikson

Senior Research Architect, Cloud Platforms

Carnegie Mellon University, Pittsburgh, USA

(IBM Research, Israel)

KubeCon, May 2019

with Ping-Min Lin (Pinterest), Shengjie Luo (VMware), Ke Chang (Facebook), Shichao Nie (Alibaba)

KubeCon / CloudNativeCon, Barcelona, May 20-23, 2019

Outline

● Introduction
○ Serverless

■ Serverless Compute

● FaaS

● Non-FaaS

● Our Use-Cases
○ Interactive Computing

○ Deep Learning

● Conclusions

2

KubeCon / CloudNativeCon, Barcelona, May 20-23, 2019

Serverless

● Many definitions

● In a nutshell:

● Avoid management of servers, as a representative example of tasks that:
○ Keep you distracted from developing your *core* business capabilities, and

○ Can be outsourced to someone you trust, for whom this would be *their* core business

● Serverless = Distraction-Free
● Separation of concerns

3

KubeCon / CloudNativeCon, Barcelona, May 20-23, 2019

Serverless = Distraction-Free (Examples)

● Object Storage:
○ Core: data organization

○ Distraction: servers, storage, network, high availability, fault tolerance, replication, consistency

● Micro-services:
○ Core: services logic, interfaces

○ Distraction: infra, scaling, LB, HA/FT, API management, routing, service discovery, etc

● Async/Event-driven:
○ Core: event-processing logic

○ Distraction: eventing, messaging, queuing, notifications, etc (+infra/scaling/LB/HA/FT/auth/etc)

● …

4

Example:

Amazon S3

Example:

Kubernetes+Istio

Example:

Lambda, SNS, etc

KubeCon / CloudNativeCon, Barcelona, May 20-23, 2019

Serverless Compute Platform (SCP)

● Platform that executes user-provided code (BYOC)

● Often optimized for specific application patterns

● Distraction-free
○ Simplified management

■ Deployment, scaling, metering, monitoring, logging, updates, etc

○ Seamless integration with services that the ‘compute’ interacts with (or depends on)

■ Event sources, data sources, communication middleware, etc.

■ Bonus: Elasticity / Pay-per-use

5

KubeCon / CloudNativeCon, Barcelona, May 20-23, 2019

SCP: Function as a Service (FaaS)

6

Platform

Property

General-Purpose FaaS

Examples Lambda, Azure functions, Google Functions;

Kubeless, OpenFaaS, OpenWhisk

Code

Application

Pattern

Management

Integration

Elasticity,

Pay-per-use

KubeCon / CloudNativeCon, Barcelona, May 20-23, 2019

SCP: Function as a Service (FaaS)

7

Platform

Property

General-Purpose FaaS

Examples Lambda, Azure functions, Google Functions;

Kubeless, OpenFaaS, OpenWhisk

Code Arbitrary functions (packaging and runtime constraints slightly differ among providers)

Application

Pattern

Management

Integration

Elasticity,

Pay-per-use

KubeCon / CloudNativeCon, Barcelona, May 20-23, 2019

SCP: Function as a Service (FaaS)

8

Platform

Property

General-Purpose FaaS

Examples Lambda, Azure functions, Google Functions;

Kubeless, OpenFaaS, OpenWhisk

Code Arbitrary functions (packaging and runtime constraints slightly differ among providers)

Application

Pattern

Short-lived, ephemeral functions, triggered by events or requests;

Often: high load variability, low sensitivity to latency

Management

Integration

Elasticity,

Pay-per-use

KubeCon / CloudNativeCon, Barcelona, May 20-23, 2019

SCP: Function as a Service (FaaS)

9

Platform

Property

General-Purpose FaaS

Examples Lambda, Azure functions, Google Functions;

Kubeless, OpenFaaS, OpenWhisk

Code Arbitrary functions (packaging and runtime constraints slightly differ among providers)

Application

Pattern

Short-lived, ephemeral functions, triggered by events or requests;

Often: high load variability, low sensitivity to latency

Management Fully managed isolated runtime containers (provisioning, monitoring, logging, etc)

Integration

Elasticity,

Pay-per-use

KubeCon / CloudNativeCon, Barcelona, May 20-23, 2019

SCP: Function as a Service (FaaS)

10

Platform

Property

General-Purpose FaaS

Examples Lambda, Azure functions, Google Functions;

Kubeless, OpenFaaS, OpenWhisk

Code Arbitrary functions (packaging and runtime constraints slightly differ among providers)

Application

Pattern

Short-lived, ephemeral functions, triggered by events or requests;

Often: high load variability, low sensitivity to latency

Management Fully managed isolated runtime containers (provisioning, monitoring, logging, etc)

Integration Seamless integration with multiple event sources

Elasticity,

Pay-per-use

KubeCon / CloudNativeCon, Barcelona, May 20-23, 2019

SCP: Function as a Service (FaaS)

11

Platform

Property

General-Purpose FaaS

Examples Lambda, Azure functions, Google Functions;

Kubeless, OpenFaaS, OpenWhisk

Code Arbitrary functions (packaging and runtime constraints slightly differ among providers)

Application

Pattern

Short-lived, ephemeral functions, triggered by events or requests;

Often: high load variability, low sensitivity to latency

Management Fully managed isolated runtime containers (provisioning, monitoring, logging, etc)

Integration Seamless integration with multiple event sources

Elasticity,

Pay-per-use
Per-request scaling and metering (e.g., 100ms granularity in Lambda)

KubeCon / CloudNativeCon, Barcelona, May 20-23, 2019

SCP: Specialized (Embedded) FaaS

12

Platform

Property

Programmable

Event-driven platforms

Programmable

Network edge platforms …

Examples Trillio Functions,

Github Actions

PubNub Functions,

Lambda@Edge …

Code Arbitrary functions (programming languages often limited)

Application

Pattern

Short-lived, ephemeral functions, triggered by events or

requests;

Management Fully managed isolated runtime

Integration The hosting platform

Elasticity,

Pay-per-use
Per-request scaling and metering

KubeCon / CloudNativeCon, Barcelona, May 20-23, 2019

Other (Non-FaaS?) SCPs: Serverless ETL

13

Platform

Property

Serverless ETL

Examples

Code

Application

Pattern

Management

Integration

Elasticity,

Pay-per-use

KubeCon / CloudNativeCon, Barcelona, May 20-23, 2019

Other (Non-FaaS?) SCPs: Serverless ETL

14

Platform

Property

Serverless ETL

Examples AWS Glue

Code

Application

Pattern

Management

Integration

Elasticity,

Pay-per-use

KubeCon / CloudNativeCon, Barcelona, May 20-23, 2019

Other (Non-FaaS?) SCPs: Serverless ETL

15

Platform

Property

Serverless ETL

Examples AWS Glue

Code PySpark, PyShell jobs

Application

Pattern

Management

Integration

Elasticity,

Pay-per-use

KubeCon / CloudNativeCon, Barcelona, May 20-23, 2019

Other (Non-FaaS?) SCPs: Serverless ETL

16

Platform

Property

Serverless ETL

Examples AWS Glue

Code PySpark, PyShell jobs

Application

Pattern

Data-parallel Spark jobs (periodic or ad-hoc)

Non-parallel pre/post-processing jobs

Management

Integration

Elasticity,

Pay-per-use

KubeCon / CloudNativeCon, Barcelona, May 20-23, 2019

Other (Non-FaaS?) SCPs: Serverless ETL

17

Platform

Property

Serverless ETL

Examples AWS Glue

Code PySpark, PyShell jobs

Application

Pattern

Data-parallel Spark jobs (periodic or ad-hoc)

Non-parallel pre/post-processing jobs

Management Fully managed Spark cluster; Python runtime

Integration

Elasticity,

Pay-per-use

KubeCon / CloudNativeCon, Barcelona, May 20-23, 2019

Other (Non-FaaS?) SCPs: Serverless ETL

18

Platform

Property

Serverless ETL

Examples AWS Glue

Code PySpark, PyShell jobs

Application

Pattern

Data-parallel Spark jobs (periodic or ad-hoc)

Non-parallel pre/post-processing jobs

Management Fully managed Spark cluster; Python runtime

Integration Data catalogue

Elasticity,

Pay-per-use

KubeCon / CloudNativeCon, Barcelona, May 20-23, 2019

Other (Non-FaaS?) SCPs: Serverless ETL

19

Platform

Property

Serverless ETL

Examples AWS Glue

Code PySpark, PyShell jobs

Application

Pattern

Data-parallel Spark jobs (periodic or ad-hoc)

Non-parallel pre/post-processing jobs

Management Fully managed Spark cluster; Python runtime

Integration Data catalogue

Elasticity,

Pay-per-use
Per-job scaling and metering

KubeCon / CloudNativeCon, Barcelona, May 20-23, 2019

Non-FaaS SCP: Cloud-Native Web Applications

20

Platform

Property

Cloud-Native Web Applications

Examples

Code

Application

Pattern

Management

Integration

Elasticity,

Pay-per-use

KubeCon / CloudNativeCon, Barcelona, May 20-23, 2019

Non-FaaS SCP: Cloud-Native Web Applications

21

Platform

Property

Cloud-Native Web Applications

Examples Knative

Code

Application

Pattern

Management

Integration

Elasticity,

Pay-per-use

KubeCon / CloudNativeCon, Barcelona, May 20-23, 2019

Non-FaaS SCP: Cloud-Native Web Applications

22

Platform

Property

Cloud-Native Web Applications

Examples Knative

Code Arbitrary application serving HTTP requests

Application

Pattern

Management

Integration

Elasticity,

Pay-per-use

KubeCon / CloudNativeCon, Barcelona, May 20-23, 2019

Non-FaaS SCP: Cloud-Native Web Applications

23

Platform

Property

Cloud-Native Web Applications

Examples Knative

Code Arbitrary application serving HTTP requests

Application

Pattern

Long-running, scale-out services; Linear resource demand per request

Often high-throughput, low-latency

Management

Integration

Elasticity,

Pay-per-use

KubeCon / CloudNativeCon, Barcelona, May 20-23, 2019

Non-FaaS SCP: Cloud-Native Web Applications

24

Platform

Property

Cloud-Native Web Applications

Examples Knative

Code Arbitrary application serving HTTP requests

Application

Pattern

Long-running, scale-out services; Linear resource demand per request

Often high-throughput, low-latency

Management K8s features + code-to-deploy, revisions, canary deployment, etc

Integration

Elasticity,

Pay-per-use

KubeCon / CloudNativeCon, Barcelona, May 20-23, 2019

Non-FaaS SCP: Cloud-Native Web Applications

25

Platform

Property

Cloud-Native Web Applications

Examples Knative

Code Arbitrary application serving HTTP requests

Application

Pattern

Long-running, scale-out services; Linear resource demand per request

Often high-throughput, low-latency

Management K8s features + code-to-deploy, revisions, canary deployment, etc

Integration Service mash, build, eventing

Elasticity,

Pay-per-use

KubeCon / CloudNativeCon, Barcelona, May 20-23, 2019

Non-FaaS SCP: Cloud-Native Web Applications

26

Platform

Property

Cloud-Native Web Applications

Examples Knative

Code Arbitrary application serving HTTP requests

Application

Pattern

Long-running, scale-out services; Linear resource demand per request

Often high-throughput, low-latency

Management K8s features + code-to-deploy, revisions, canary deployment, etc

Integration Service mash, build, eventing

Elasticity,

Pay-per-use
Request-based scaling, incl. to zero

KubeCon / CloudNativeCon, Barcelona, May 20-23, 2019

What Other Application Patterns Could Justify a Specialized SCP?

27

Platform

Property

?

Examples ?

Code ?

Application

Pattern

?

Management ?

Integration ?

Elasticity,

Pay-per-use
?

KubeCon / CloudNativeCon, Barcelona, May 20-23, 2019

Outline

● Introduction
○ Serverless

■ Serverless Compute

● FaaS

● Non-FaaS

● Our Use-Cases
○ Interactive Computing

○ Deep Learning

● Conclusions

28

KubeCon / CloudNativeCon, Barcelona, May 20-23, 2019

Interactive Computing

● Example: Data Science using Jupyter Notebook

● Architecture 1: Python + Spark
○ Scale-out Spark jobs

○ Requires Spark programming model

● Architecture 2: “pure” Python
○ Local execution, using non-parallel

Python libraries

○ Not designed for scale-out,

but can take advantage of scale-up

● Other example: Linux Shell
29

KubeCon / CloudNativeCon, Barcelona, May 20-23, 2019

SCP for Interactive Computing

30

Property

Interactive Computing (Jupyter, Shell)

Code

Application

Pattern

Management

Integration

Elasticity,

Pay-per-use

KubeCon / CloudNativeCon, Barcelona, May 20-23, 2019

SCP for Interactive Computing

31

Property

Interactive Computing (Jupyter, Shell)

Code Python, Bash

Application

Pattern

Management

Integration

Elasticity,

Pay-per-use

KubeCon / CloudNativeCon, Barcelona, May 20-23, 2019

SCP for Interactive Computing

32

Property

Interactive Computing (Jupyter, Shell)

Code Python, Bash

Application

Pattern

Iterative invocation of stateful, non-parallel, computation-intensive,

ad-hoc tasks, triggered by explicit user interaction

Management

Integration

Elasticity,

Pay-per-use

KubeCon / CloudNativeCon, Barcelona, May 20-23, 2019

SCP for Interactive Computing

33

Property

Interactive Computing (Jupyter, Shell)

Code Python, Bash

Application

Pattern

Iterative invocation of stateful, non-parallel, computation-intensive,

ad-hoc tasks, triggered by explicit user interaction

Management Provisioning, management, scaling of underlying resources

Integration

Elasticity,

Pay-per-use

KubeCon / CloudNativeCon, Barcelona, May 20-23, 2019

SCP for Interactive Computing

34

Property

Interactive Computing (Jupyter, Shell)

Code Python, Bash

Application

Pattern

Iterative invocation of stateful, non-parallel, computation-intensive,

ad-hoc tasks, triggered by explicit user interaction

Management Provisioning, management, scaling of underlying resources

Integration Data sources, auth, etc

Elasticity,

Pay-per-use

KubeCon / CloudNativeCon, Barcelona, May 20-23, 2019

SCP for Interactive Computing

35

Property

Interactive Computing (Jupyter, Shell)

Code Python, Bash

Application

Pattern

Iterative invocation of stateful, non-parallel, computation-intensive,

ad-hoc tasks, triggered by explicit user interaction

Management Provisioning, management, scaling of underlying resources

Integration Data sources, auth, etc

Elasticity,

Pay-per-use

Flexible resource allocation (vertical scaling) guided by user input (e.g., magics);

Scale to zero when idle

KubeCon / CloudNativeCon, Barcelona, May 20-23, 2019

Runbox: Elastic Persistent Execution Environment on K8s

36

Notebook Filesystem Data Volume

Pod/RS

Container

Dev Machine

Runbox

Runbox

Controller*

Kubernetes Cluster

UI

(e.g.,

Jupyter,

Bash)

Runbox

Proxy

KubeCon / CloudNativeCon, Barcelona, May 20-23, 2019

DEMO – Bash

37

KubeCon / CloudNativeCon, Barcelona, May 20-23, 2019
38

Runbox environment:

Pod, Image, Volume,

(+deployment, side-car)

Remote command execution

Filesystem synchronization

KubeCon / CloudNativeCon, Barcelona, May 20-23, 2019
39

Filesystem synchronization

Persistent over recycling

of idle resource (e.g., by

Runbox controller)

Runbox environment:

Pod, Image, Volume,

(+deployment, side-car)

Remote command execution

KubeCon / CloudNativeCon, Barcelona, May 20-23, 2019
40

Filesystem synchronization

Persistent over recycling

of idle resource (e.g., by

Runbox controller)

Per-command vertical scaling

Runbox environment:

Pod, Image, Volume,

(+deployment, side-car)

Remote command execution

KubeCon / CloudNativeCon, Barcelona, May 20-23, 2019
41

Filesystem synchronization

Persistent over recycling

of idle resource (e.g., by

Runbox controller)

Per-command vertical scaling

Runbox environment:

Pod, Image, Volume,

(+deployment, side-car)

Remote command execution

KubeCon / CloudNativeCon, Barcelona, May 20-23, 2019

DEMO – Jupyter

42

KubeCon / CloudNativeCon, Barcelona, May 20-23, 2019
43

KubeCon / CloudNativeCon, Barcelona, May 20-23, 2019

KubeCon / CloudNativeCon, Barcelona, May 20-23, 2019

KubeCon / CloudNativeCon, Barcelona, May 20-23, 2019

KubeCon / CloudNativeCon, Barcelona, May 20-23, 2019
47

KubeCon / CloudNativeCon, Barcelona, May 20-23, 2019
48

KubeCon / CloudNativeCon, Barcelona, May 20-23, 2019

Architecture - Jupyter

49

J
u
p
y
te

r
-

B
ro

w
s
e
r

Jupyter Server

Runbox

Extension

Notebook Filesystem Data Volume

Pod/RS

Container

Dev Machine
Runbox

Runbox

Controller*

sync

cold

save

GC
1 start kernel

4 resize

3 sync

2 create

6 resize

up

5 run cell

7 exec

9 exec

11

12

10 save

8 restore

Kubernetes Cluster

KubeCon / CloudNativeCon, Barcelona, May 20-23, 2019

Design Details

● Special Jupyter Kernels, delegating execution to a K8s Pod using `kubectl exec`
○ E.g., scp-python, scp-bash

● State is persisted in a K8s volume attached to the Pod
○ Snapshot/restore in-memory state using `dill` in Python and `set/source` in Bash

○ Also, state is synchronized from/to the local machine via a side-car running unison

● Pod is scaled down (optionally, to zero) when nothing is executed
○ E.g., by scaling the containing ReplicaSet, or using in-place Pod vertical scaling (WIP)

○ Tradeoff between capacity for ‘warm’ containers and latency managed by dedicated controller

● When image changes (e.g., after `apt install`), a new image is committed
○ Using tags for versioning; docker-squash to remove redundant layers

● Magics to control the non-functional properties
○ E.g., resource allocation, whether or not image snapshot is needed, etc

50

KubeCon / CloudNativeCon, Barcelona, May 20-23, 2019

Lessons Learned

● Kubernetes originally focused on scale-out workloads, but can also support

scale-up

○ New kind of controller?

● Generic support for application-assisted snapshots could be useful

● For use-cases involving ephemeral compute, API for direct access to volumes

could be useful

51

KubeCon / CloudNativeCon, Barcelona, May 20-23, 2019

Outline

● Introduction
○ Serverless

■ Serverless Compute

● FaaS

● Non-FaaS

● Our Use-Cases
○ Interactive Computing

○ Deep Learning

● Conclusions

52

KubeCon / CloudNativeCon, Barcelona, May 20-23, 2019

Deep Learning

● Resource-intensive
○ (1) model training, (2) inference

● Frameworks: Tensorflow, Keras, PyTorch, etc.
● ‘Hot’ research area – new algorithms, frameworks, etc

● Example application: Image Classification
○ Given a model + unlabeled example(s), predict label(s)

○ Compute-intensive, scale-out, can leverage GPUs

53

transportation medicine smart cities, security consumer games e-commerce

KubeCon / CloudNativeCon, Barcelona, May 20-23, 2019

SCP for Deep Learning Inference

54

Property

Deep Learning Inference

Code

Application

Pattern

Management

Integration

Elasticity,

Pay-per-use

KubeCon / CloudNativeCon, Barcelona, May 20-23, 2019

SCP for Deep Learning Inference

55

Property

Deep Learning Inference

Code Model inference implementation (Python)

Application

Pattern

Management

Integration

Elasticity,

Pay-per-use

KubeCon / CloudNativeCon, Barcelona, May 20-23, 2019

SCP for Deep Learning Inference

56

Property

Deep Learning Inference

Code Model inference implementation (Python)

Application

Pattern

Long-running, scale-out services; Linear resource demand per request; Load variance

Can benefit from running on GPUs; potentially large “cold-start” latencies

Management

Integration

Elasticity,

Pay-per-use

KubeCon / CloudNativeCon, Barcelona, May 20-23, 2019

SCP for Deep Learning Inference

57

Property

Deep Learning Inference

Code Model inference implementation (Python)

Application

Pattern

Long-running, scale-out services; Linear resource demand per request; Load variance

Can benefit from running on GPUs; potentially large “cold-start” latencies

Management
Same as Knative: build, serving, eventing

Load balancing between GPU and CPU resources; Minimal ‘cold-start’ latency

Integration

Elasticity,

Pay-per-use

KubeCon / CloudNativeCon, Barcelona, May 20-23, 2019

SCP for Deep Learning Inference

58

Property

Deep Learning Inference

Code Model inference implementation (Python)

Application

Pattern

Long-running, scale-out services; Linear resource demand per request; Load variance

Can benefit from running on GPUs; potentially large “cold-start” latencies

Management
Same as Knative: build, serving, eventing

Load balancing between GPU and CPU resources; Minimal ‘cold-start’ latency

Integration K8s, Istio, model storage, etc

Elasticity,

Pay-per-use

KubeCon / CloudNativeCon, Barcelona, May 20-23, 2019

SCP for Deep Learning Inference

59

Property

Deep Learning Inference

Code Model inference implementation (Python)

Application

Pattern

Long-running, scale-out services; Linear resource demand per request; Load variance

Can benefit from running on GPUs; potentially large “cold-start” latencies

Management
Same as Knative: build, serving, eventing

Load balancing between GPU and CPU resources; Minimal ‘cold-start’ latency

Integration K8s, Istio, model storage, etc

Elasticity,

Pay-per-use
Request-based scaling, including scaling to zero

KubeCon / CloudNativeCon, Barcelona, May 20-23, 2019

Our Architecture

60

Pod

scaling

GPU Nodes

Pod Pod

scaling

Knative

Service 2

PodPodPodPod

Knative

Service 1

Pod

scaling

CPU Nodes

Pod Pod

scaling

Knative

Service 4

PodPodPodPod

Knative

Service 3

Pod

Standby

Pool

GPU-aware

Load Balancer
LB

GPU

Scheduler

Pool

Manager

User

Hybrid Service

KubeCon / CloudNativeCon, Barcelona, May 20-23, 2019

Design Details

● Build: Automatically add HTTP interface
○ Augment the provided inference logic with a Django ‘wrapper’, then use Knative build to deploy it

● Load-balancing across GPU-enabled and CPU-only nodes
○ Patch Knative to support GPU resources

○ Based on model properties, indicate in the Knative service template whether a GPU is preferable

○ Two-level scheduling: 1 GPU service and 1 CPU service for each app; fair time-sharing of GPUs

● Maintain a pool of ‘warm’ Pods
○ “Pool” is a ReplicaSet with ‘warm’ (running) Pods

■ Size is adjusted dynamically by the Pool Controller (cluster utilization, estimated demand)

○ Knative scaling logic consumes a warm Pod from the Pool instead of provisioning a new one

■ Pod “migration” is implemented by label manipulation + update of the Istio side-car via API

61

KubeCon / CloudNativeCon, Barcelona, May 20-23, 2019

Lessons Learned

● Standardized HTTP wrappers can be used to deliver FaaS-like experience
○ Can leverage existing open source FaaS solutions (e.g., OpenWhisk)

● More fine-grained management of GPU resources would be beneficial
○ The overhead of 2-level scheduling is substantial

● For reuse of ‘warm’ Pods, stronger notion of ‘similarity’ between Pods is needed
○ E.g., same model version?

● Even pool of size 1 significantly reduces the chances of cold starts
○ Instead of pools, can we reuse priority classes and make Knative scaling logic adjust priorities?

62

KubeCon / CloudNativeCon, Barcelona, May 20-23, 2019

Outline

● Introduction
○ Serverless

■ Serverless Compute

● FaaS

● Non-FaaS

● Our Use-Cases
○ Deep Learning

○ Interactive Computing

● Conclusions

63

KubeCon / CloudNativeCon, Barcelona, May 20-23, 2019

Conclusions

● “Serverless” = BYOC + elasticity + distraction-free

● “Serverless” derives different requirements for different workloads

● Lots of opportunities to deliver ‘serverless’ experience for new workloads!

○ Knative can be enhanced to achieve “serverless” goals for DL inference (KFserving?)

○ SCP for Interactive Computing requires new capabilities on top of Kubernetes

64

KubeCon / CloudNativeCon, Barcelona, May 20-23, 2019

Questions? Ideas? Suggestions?

● alex.glikson at gmail.com

65

