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Serverless

● Many definitions

● In a nutshell:

● Avoid management of servers, as a representative example of tasks that:
○ Keep you distracted from developing your *core* business capabilities, and

○ Can be outsourced to someone you trust, for whom this would be *their* core business

● Serverless = Distraction-Free
● Separation of concerns
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Serverless = Distraction-Free (Examples)

● Object Storage:
○ Core: data organization

○ Distraction: servers, storage, network, high availability, fault tolerance, replication, consistency

● Micro-services:
○ Core: services logic, interfaces

○ Distraction: infra, scaling, LB, HA/FT, API management, routing, service discovery, etc

● Async/Event-driven:
○ Core: event-processing logic

○ Distraction: eventing, messaging, queuing, notifications, etc (+infra/scaling/LB/HA/FT/auth/etc)

● … 
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Serverless Compute Platform (SCP)

● Platform that executes user-provided code (BYOC)

● Often optimized for specific application patterns

● Distraction-free
○ Simplified management

■ Deployment, scaling, metering, monitoring, logging, updates, etc

○ Seamless integration with services that the ‘compute’ interacts with (or depends on)

■ Event sources, data sources, communication middleware, etc.

■ Bonus: Elasticity / Pay-per-use
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SCP: Function as a Service (FaaS)
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SCP: Function as a Service (FaaS)

7

Platform 

Property

General-Purpose FaaS

Examples Lambda, Azure functions, Google Functions; 

Kubeless, OpenFaaS, OpenWhisk

Code Arbitrary functions (packaging and runtime constraints slightly differ among providers)

Application 

Pattern

Management

Integration

Elasticity, 

Pay-per-use



KubeCon / CloudNativeCon, Barcelona, May 20-23, 2019

SCP: Function as a Service (FaaS)

8

Platform 

Property

General-Purpose FaaS

Examples Lambda, Azure functions, Google Functions; 

Kubeless, OpenFaaS, OpenWhisk

Code Arbitrary functions (packaging and runtime constraints slightly differ among providers)

Application 

Pattern

Short-lived, ephemeral functions, triggered by events or requests; 

Often: high load variability, low sensitivity to latency

Management

Integration

Elasticity, 

Pay-per-use



KubeCon / CloudNativeCon, Barcelona, May 20-23, 2019

SCP: Function as a Service (FaaS)

9

Platform 

Property

General-Purpose FaaS

Examples Lambda, Azure functions, Google Functions; 

Kubeless, OpenFaaS, OpenWhisk

Code Arbitrary functions (packaging and runtime constraints slightly differ among providers)

Application 

Pattern

Short-lived, ephemeral functions, triggered by events or requests; 

Often: high load variability, low sensitivity to latency

Management Fully managed isolated runtime containers (provisioning, monitoring, logging, etc)

Integration

Elasticity, 

Pay-per-use



KubeCon / CloudNativeCon, Barcelona, May 20-23, 2019

SCP: Function as a Service (FaaS)

10

Platform 

Property

General-Purpose FaaS

Examples Lambda, Azure functions, Google Functions; 

Kubeless, OpenFaaS, OpenWhisk

Code Arbitrary functions (packaging and runtime constraints slightly differ among providers)

Application 

Pattern

Short-lived, ephemeral functions, triggered by events or requests; 

Often: high load variability, low sensitivity to latency

Management Fully managed isolated runtime containers (provisioning, monitoring, logging, etc)

Integration Seamless integration with multiple event sources

Elasticity, 

Pay-per-use



KubeCon / CloudNativeCon, Barcelona, May 20-23, 2019

SCP: Function as a Service (FaaS)
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SCP: Specialized (Embedded) FaaS
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Other (Non-FaaS?) SCPs: Serverless ETL
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Non-FaaS SCP: Cloud-Native Web Applications
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What Other Application Patterns Could Justify a Specialized SCP?
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Interactive Computing

● Example: Data Science using Jupyter Notebook

● Architecture 1: Python + Spark
○ Scale-out Spark jobs

○ Requires Spark programming model

● Architecture 2: “pure” Python
○ Local execution, using non-parallel 

Python libraries

○ Not designed for scale-out, 

but can take advantage of scale-up

● Other example: Linux Shell
29
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SCP for Interactive Computing
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Runbox: Elastic Persistent Execution Environment on K8s
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DEMO – Bash
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DEMO – Jupyter
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Architecture - Jupyter

49

J
u
p
y
te

r
-

B
ro

w
s
e
r

Jupyter Server

Runbox

Extension

Notebook Filesystem Data Volume

Pod/RS

Container

Dev Machine
Runbox

Runbox

Controller*

sync

cold

save

GC
1 start kernel

4 resize

3 sync

2 create

6 resize

up

5 run cell

7 exec

9 exec

11

12

10 save

8 restore

Kubernetes Cluster



KubeCon / CloudNativeCon, Barcelona, May 20-23, 2019

Design Details

● Special Jupyter Kernels, delegating execution to a K8s Pod using `kubectl exec`
○ E.g., scp-python, scp-bash

● State is persisted in a K8s volume attached to the Pod
○ Snapshot/restore in-memory state using `dill` in Python and `set/source` in Bash

○ Also, state is synchronized from/to the local machine via a side-car running unison

● Pod is scaled down (optionally, to zero) when nothing is executed
○ E.g., by scaling the containing ReplicaSet, or using in-place Pod vertical scaling (WIP)

○ Tradeoff between capacity for ‘warm’ containers and latency managed by dedicated controller

● When image changes (e.g., after `apt install`), a new image is committed
○ Using tags for versioning; docker-squash to remove redundant layers

● Magics to control the non-functional properties
○ E.g., resource allocation, whether or not image snapshot is needed, etc
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Lessons Learned

● Kubernetes originally focused on scale-out workloads, but can also support 

scale-up

○ New kind of controller?

● Generic support for application-assisted snapshots could be useful

● For use-cases involving ephemeral compute, API for direct access to volumes 

could be useful
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Deep Learning

● Resource-intensive
○ (1) model training, (2) inference

● Frameworks: Tensorflow, Keras, PyTorch, etc.
● ‘Hot’ research area – new algorithms, frameworks, etc

● Example application: Image Classification
○ Given a model + unlabeled example(s), predict label(s)

○ Compute-intensive, scale-out, can leverage GPUs
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SCP for Deep Learning Inference
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SCP for Deep Learning Inference
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Our Architecture
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Design Details

● Build: Automatically add HTTP interface
○ Augment the provided inference logic with a Django ‘wrapper’, then use Knative build to deploy it

● Load-balancing across GPU-enabled and CPU-only nodes
○ Patch Knative to support GPU resources

○ Based on model properties, indicate in the Knative service template whether a GPU is preferable

○ Two-level scheduling: 1 GPU service and 1 CPU service for each app; fair time-sharing of GPUs

● Maintain a pool of ‘warm’ Pods
○ “Pool” is a ReplicaSet with ‘warm’ (running) Pods

■ Size is adjusted dynamically by the Pool Controller (cluster utilization, estimated demand)

○ Knative scaling logic consumes a warm Pod from the Pool instead of provisioning a new one

■ Pod “migration” is implemented by label manipulation + update of the Istio side-car via API

61



KubeCon / CloudNativeCon, Barcelona, May 20-23, 2019

Lessons Learned

● Standardized HTTP wrappers can be used to deliver FaaS-like experience
○ Can leverage existing open source FaaS solutions (e.g., OpenWhisk)

● More fine-grained management of GPU resources would be beneficial
○ The overhead of 2-level scheduling is substantial

● For reuse of ‘warm’ Pods, stronger notion of ‘similarity’ between Pods is needed
○ E.g., same model version?

● Even pool of size 1 significantly reduces the chances of cold starts
○ Instead of pools, can we reuse priority classes and make Knative scaling logic adjust priorities?
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Conclusions

● “Serverless” = BYOC + elasticity + distraction-free

● “Serverless” derives different requirements for different workloads

● Lots of opportunities to deliver ‘serverless’ experience for new workloads!

○ Knative can be enhanced to achieve “serverless” goals for DL inference (KFserving?)

○ SCP for Interactive Computing requires new capabilities on top of Kubernetes
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Questions? Ideas? Suggestions?

● alex.glikson at gmail.com
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