el



https://rook.io/
https://github.com/rook/rook

What is Rook?

e Cloud-Native Storage Orchestrator

e Extends Kubernetes with custom types and controllers

e Automates deployment, bootstrapping, configuration,
provisioning, scaling, upgrading, migration, disaster recovery,
monitoring, and resource management

e Framework for many storage providers and solutions

e Open Source (Apache 2.0)

e Hosted by the Cloud-Native Computing Foundation (CNCF)



Rook Framework for Storage Solutions

e Rook is more than just a collection of Operators and CRDs
e Framework for storage providers to integrate their solutions
into cloud-native environments
o Storage resource normalization
o Operator patterns/plumbing
o Common policies, specs, logic
o Testing effort
e Ceph, CockroachDB, Minio, NFS, Cassandra, EdgeFS, and
more...



New Rook Operators

Apache Cassandra @

@ Nexenta EdgeFS

~~
A




Apache Cassandra

e (Cassandrais an open-source, distributed NoSQL database
that can handle large amounts of data on commodity
hardware
o Highly available with no single point of failure
o Horizontal scaling

e Great candidate for building an operator to manage it

e Designed and implemented by Yannis Zarkadas as part of
his graduate thesis, sponsored by Arrikto
o Github: @yanniszark




Can StatefulSets manage a reliable

Cassandra cluster?

e Confined to 1 rack - no cluster hierarchy, multiple racks, etc.
e Safe scale down procedure is complicated and time

consuming
o nodetool decommission
o stream data
o member leaves

e Issues with seeds, multi-zone deployments, loss of

persistence, backups/restores, extensibility
e (Cassandra needs an operator! @



Cassandra Operator

cassandra.rook.io/vlalphal
: Cluster

: my-cassandra-cluster

write
3,0, 11 &

: europe-west-1

: europe-westl-b




Cassandra as Kubernetes Resources

> kubernetes

cassandra
Member Pod
Rack StatefulSet
Datacenter StatefulSets
Cluster Cluster

Custom Resource

: cassandra.rook.io/vlalphal

: Cluster

: my-cassandra-cluster
o ikl

: europe-west-1

: europe-westl-b




Cassandra Operator Features

Cluster creation and bootstrapping

Auto scaling - grow the cluster with new members
Scale-down (safely!) - decommission, stream data, leave
Handle failed node and replace with new members
More to come...



EdgeFS

e Natively designed to be global storage

e Based on immutable blocks similar to Git
o modifications are globally unique and versioned
o modification results in a new identity
o caches are always in a consistent state
o allows global fault tolerance, global scalability

e Segmented storage - stitching clouds into one single
geo-namespace
o ISGW - Inter-Segment GateWay




EdgeFS - metadata only

e Mode to (initially) transfer metadata only across segments

e Full file listings and info are available globally fast

e Data chunks will be fetched lazily (on demand)

e Critical for enabling a globally remote client to start
consuming data as soon as it is created

o)



EdgeFS - deduplication and recovery

e Global deduplication - multiple identical chunks are only
stored once

e Built in disaster recovery: lost data chunks can be recovered
from remote segments transparently

e C(lient sees atemporary loss in throughput, but no errors
while fetching from remote

e Local site cache is repopulated with recovered data




Software runs in many environments

Kubernetes runs great everywhere

Rook is great on-premises

Cloud provider managed services are great in the cloud
So, can we have both?

Manage our infrastructure, platform services, storage,
and applications all from one place: kubectl

e Portable abstractions for all our storage needs



Power of Portability

e Power of choice - cost, features, availability, compliance, etc.
e Take our data wherever Kubernetes goes
e Pod and Volume abstractions enables portability
o What about databases, buckets, message queues, data
pipelines, etc.?
e Crossplane - open source multicloud control plane
o https://crossplane.io/ '

Crossplane


https://crossplane.io/

Dynamic provisioning for new storage types

e Similar pattern to StorageClass and PersistentVolumeClaim
e ResourceClass - a “blueprint” created by the administrator
o all environment specifics to create a “class” of storage
o Fast, Standard, Cheap, etc.
e ResourceClaim - user defined, expresses the general need for
a type of storage
e Storage is created on demand as needed
e Enables portability and the power of choice
e Write once, run anywhere



Extending Crossplane

e Add new out-of-tree functionality to Crossplane with an
Extension

e Let's extend Crossplane with Rook!

e Now we can dynamically provision new storage types
in-cluster (on-premises) too

extensions.crossplane.io/vlalphal
ExtensionRequest

rook-cockroachdb-extension

rook/cockroachdb master \




func addCockroachDBProvisioner(mgr manager.Manager, r reconcile.Reconciler) error {
// Create a new controller
c, err := controller.New("cockroachdb", mgr, controller.Options{Reconciler: r})
if err != nil {
return err

}

// Watch for PostgreSQL resource claim events
err = c.Watch(&source.Kind{Type: &storagevlalphal.PostgreSQLInstance{}},
&handler.EnqueueRequestForObject{})
if err != nil {
petunnsern

}

return nil




(r *CockroachDBProvisioner) Reconcile(request reconcile.Request) (reconcile.Result,

L

instance := &storagevlalphal.PostgreSQLInstance{}
r.Get(ctx, request.NamespacedName, instance)

handler := r.getHandler(instance)

instance.DeletionTimestamp != nil && {
r.delete(instance, handler)

instance.ResourceRef() == nil {
r.provision(instance, handler)

r.bind(instance, handler)




(h *CockroachDBHandler) Provision(class *corevlalphal.ResourceClass, instance
corevlalphal.AbstractResource) (corevlalphal.ConcreteResource, error) {

sacbNE ctal | 3« A ram

clusterSpec := cockroachdbvlalphal.NewClusterSpec(class.Parameters)
// assign reclaim policy and references from the reso
clusterSpec.ReclaimPolicy = class.ReclaimPolicy
clusterSpec.ClassRef = class.ObjectReference()
clusterSpec.ClaimRef = instance.ObjectReference()

cluster := &cockroachdbvlalphal.Cluster{
ObjectMeta: metavl.ObjectMeta{
Namespace: class.Namespace,
Name: clusterName,

b

Spec: *clusterSpec,

h.CockroachdbVlalphal().Clusters(class.Namespace).Create(cluster)




Demo

Extending Crossplane with
Rook-CockroachDB




What did we cover today?

e Rook is a cloud-native storage orchestrator

e Framework to create storage operators that deploy,
configure, and manage many storage solutions in Kubernetes

e Apache Cassandra - scale-up, scale-down, node failover

e EdgeFS - globally distributed storage in a single
geo-namespace

e Extend Crossplane with new multi-cloud functionality

e Dynamically provision all sorts of storage types in the cloud
and on-premises with Crossplane & Rook



How to get involved?

e Contribute to Rook and Crossplane
o https://rook.io/
o https://crossplane.io/
e Slack
o https://slack.rook.io/
o https://slack.crossplane.io/
e Twitter - @rook_io & @crossplane_io
e Forums - rook-dev & crossplane-dev on google groups
e Community Meetings



https://rook.io/
https://crossplane.io/
https://slack.rook.io/
https://slack.crossplane.io/

Rook sessions at Kubecon

Meet the Maintainers
Wednesday, 12:30 @ CNCF Answer Bar

Keep the Space Shuttle Flying: Writing Robust
Operators
Wednesday, 15:55 @ Hall 8.1 G2

Rook, Ceph, and ARM: A Caffeinated Tutorial
Wednesday, 16:45 @ Hall 8.0 D2




Thank you!

https://rook.io/

https://crossplane.io/



https://rook.io/

