
Rook Deep Dive

Jared Watts
Rook Senior Maintainer
Upbound Founding Engineer

https://rook.io/
https://github.com/rook/rook

https://rook.io/
https://github.com/rook/rook


● Cloud-Native Storage Orchestrator
● Extends Kubernetes with custom types and controllers
● Automates deployment, bootstrapping, configuration, 

provisioning, scaling, upgrading, migration, disaster recovery, 
monitoring, and resource management

● Framework for many storage providers and solutions
● Open Source (Apache 2.0)
● Hosted by the Cloud-Native Computing Foundation (CNCF)

What is Rook?



Rook Framework for Storage Solutions

● Rook is more than just a collection of Operators and CRDs
● Framework for storage providers to integrate their solutions 

into cloud-native environments
○ Storage resource normalization
○ Operator patterns/plumbing
○ Common policies, specs, logic
○ Testing effort

● Ceph, CockroachDB, Minio, NFS, Cassandra, EdgeFS, and 
more...



New Rook Operators

Apache Cassandra

Nexenta EdgeFS



● Cassandra is an open-source, distributed NoSQL database 
that can handle large amounts of data on commodity 
hardware
○ Highly available with no single point of failure
○ Horizontal scaling

● Great candidate for building an operator to manage it
● Designed and implemented by Yannis Zarkadas as part of 

his graduate thesis, sponsored by Arrikto
○ Github: @yanniszark

Apache Cassandra



● Confined to 1 rack - no cluster hierarchy, multiple racks, etc.
● Safe scale down procedure is complicated and time 

consuming
○ nodetool decommission 
○ stream data
○ member leaves

● Issues with seeds, multi-zone deployments, loss of 
persistence, backups/restores, extensibility

● Cassandra needs an operator!

Can StatefulSets manage a reliable 
Cassandra cluster?



Cassandra Operator

Operator

Observe

Analyze

Act

write



Cassandra as Kubernetes Resources

Member Pod

Cluster

Rack

Datacenter

StatefulSet

StatefulSets

Cluster
Custom Resource



● Cluster creation and bootstrapping
● Auto scaling - grow the cluster with new members
● Scale-down (safely!) - decommission, stream data, leave
● Handle failed node and replace with new members
● More to come...

Cassandra Operator Features



● Natively designed to be global storage
● Based on immutable blocks similar to Git

○ modifications are globally unique and versioned
○ modification results in a new identity
○ caches are always in a consistent state
○ allows global fault tolerance, global scalability

● Segmented storage - stitching clouds into one single 
geo-namespace
○ ISGW - Inter-Segment GateWay

EdgeFS



EdgeFS - metadata only

● Mode to (initially) transfer metadata only across segments 
● Full file listings and info are available globally fast 
● Data chunks will be fetched lazily (on demand)
● Critical for enabling a globally remote client to start 

consuming data as soon as it is created



EdgeFS - deduplication and recovery 

● Global deduplication - multiple identical chunks are only 
stored once

● Built in disaster recovery: lost data chunks can be recovered 
from remote segments transparently

● Client sees a temporary loss in throughput, but no errors 
while fetching from remote

● Local site cache is repopulated with recovered data



● Kubernetes runs great everywhere
● Rook is great on-premises
● Cloud provider managed services are great in the cloud
● So, can we have both?
● Manage our infrastructure, platform services, storage, 

and applications all from one place: kubectl
● Portable abstractions for all our storage needs

Software runs in many environments



Power of Portability

● Power of choice - cost, features, availability, compliance, etc.
● Take our data wherever Kubernetes goes
● Pod and Volume abstractions enables portability

○ What about databases, buckets, message queues, data 
pipelines, etc.?

● Crossplane - open source multicloud control plane
○ https://crossplane.io/

https://crossplane.io/


Dynamic provisioning for new storage types

● Similar pattern to StorageClass and PersistentVolumeClaim
● ResourceClass - a “blueprint” created by the administrator

○ all environment specifics to create a “class” of storage
○ Fast, Standard, Cheap, etc.

● ResourceClaim - user defined, expresses the general need for 
a type of storage

● Storage is created on demand as needed
● Enables portability and the power of choice
● Write once, run anywhere



Extending Crossplane

● Add new out-of-tree functionality to Crossplane with an 
Extension

● Let’s extend Crossplane with Rook!
● Now we can dynamically provision new storage types 

in-cluster (on-premises) too



CockroachDB Dynamic Provisioner - 
Observe



CockroachDB Dynamic Provisioner - Analyze



CockroachDB Dynamic Provisioner - Act



Demo

Extending Crossplane with 
Rook-CockroachDB



What did we cover today?

● Rook is a cloud-native storage orchestrator
● Framework to create storage operators that deploy, 

configure, and manage many storage solutions in Kubernetes
● Apache Cassandra - scale-up, scale-down, node failover
● EdgeFS - globally distributed storage in a single 

geo-namespace 
● Extend Crossplane with new multi-cloud functionality
● Dynamically provision all sorts of storage types in the cloud 

and on-premises with Crossplane & Rook



● Contribute to Rook and Crossplane
○ https://rook.io/
○ https://crossplane.io/

● Slack
○ https://slack.rook.io/
○ https://slack.crossplane.io/

● Twitter - @rook_io & @crossplane_io
● Forums - rook-dev & crossplane-dev on google groups
● Community Meetings

How to get involved?

https://rook.io/
https://crossplane.io/
https://slack.rook.io/
https://slack.crossplane.io/


Meet the Maintainers
Wednesday, 12:30 @ CNCF Answer Bar

Keep the Space Shuttle Flying: Writing Robust 
Operators

Wednesday, 15:55 @ Hall 8.1 G2

Rook, Ceph, and ARM: A Caffeinated Tutorial
Wednesday, 16:45 @ Hall 8.0 D2

Rook sessions at Kubecon



Thank you!
https://rook.io/

https://crossplane.io/

https://rook.io/

