
Data Without Borders
Using Rook Storage Orchestration at a 
Global Scale

Jared Watts
Rook Senior Maintainer
Upbound Founding Engineer

https://rook.io/
https://github.com/rook/rook

https://rook.io/
https://github.com/rook/rook


● Reliability: Avoid downtime despite failures/outages
● Performance: Run as close to your users as possible
● Cost: Choosing the cheapest option, free credits
● Innovation: Taking advantage of a new features/offerings
● Compliance: Government policy, data sovereignty
● Hybrid: First foray into public cloud
● Mergers: Different businesses with different infrastructures
● Policy: multi-vendor organizational policy at all levels

Why Deploy Globally (multi-cloud)?



Terminology

● Availability - resistance to downtime
● Durability - resistance to total loss
● Latency - delay in networking communication
● Locality - geographic topology awareness
● Replication/Mirror - copying the data in its entirety to another 

site
● Snapshots - point in time “complete” state
● Disaster recovery - BOOM...now what?



● Cloud-Native Storage Orchestrator
● Extends Kubernetes with custom types and controllers
● Automates deployment, bootstrapping, configuration, 

provisioning, scaling, upgrading, migration, disaster recovery, 
monitoring, and resource management

● Framework for many storage providers and solutions
● Open Source (Apache 2.0)
● Hosted by the Cloud-Native Computing Foundation (CNCF)

What is Rook?



● Rook is an orchestrator - it’s the control plane, not the data 
plane

● Data plane: reading and writing of bytes
● Control plane: bootstraps, deploys, configures, manages the 

data plane
● Rook orchestrates multiple data planes including EdgeFS, 

Ceph, CockroachDB, and others
● Similar distinction between Istio (control) and Envoy (data)

Control Planes & Data Planes



Data Plane Approaches



● At a high level, there are two different architectures
● Storage systems that work at global scale (EdgeFS, 

CockroachDB)
● Storage systems that work at local scale, and federate at 

global scale (Ceph, MySql, etc.)
● The examples on the following slides are all orchestrated by 

Rook’s control plane

Data plane architectures



● Core architecture is for a single local cluster
● NOT designed to be natively global
● Strongly consistent storage model (<5ms latency between 

nodes)
○ All writes acknowledged by replicas before committed

● Highly scalable due to decentralized data placement
● Asynchronous replication (mirroring) of blocks and object 

storage across clusters
● Reliability, availability, disaster recovery

Ceph



● Natively designed to be global storage
● Based on immutable blocks similar to Git

○ modifications are globally unique and versioned
○ modification results in a new identity
○ caches are always in a consistent state
○ allows global fault tolerance, global scalability

● Segmented storage - stitching clouds into one single 
geo-namespace
○ ISGW - Inter-Segment GateWay

EdgeFS



EdgeFS - metadata only

● Mode to (initially) transfer metadata only across segments 
● Full file listings and info are available globally fast 
● Data chunks will be fetched lazily (on demand)
● Critical for enabling a globally remote client to start 

consuming data as soon as it is created



EdgeFS - deduplication and recovery 

● Global deduplication - multiple identical chunks are only 
stored once

● Built in disaster recovery: lost data chunks can be recovered 
from remote segments transparently

● Client sees a temporary loss in throughput, but no errors 
while fetching from remote

● Local site cache is repopulated with recovered data



● Natively designed to be global storage
● Built in locality awareness
● Your data isn’t bound by the data centers of just one 

cloud provider
● Design goal: minimize latency (data close to users) 

without sacrificing availability (high number of replicas 
across environments)

CockroachDB



CockroachDB - Distributed Algorithms

● The nodes self-organize via a Gossip protocol and how the 
cluster replicates data via the Raft consensus algorithm

● Nodes self-organize with Gossip protocol
○ every node has up-to-date details of other nodes in the 

cluster (e.g., location of data, storage capacity)
● Cluster replicates data with Raft consensus algorithm

○ ensures that every “range” of data is replicated and all 
replicas are consistent

○ Raft also used by etcd



● cockroach start --locality region=us-west

● Locality information to increase “replica diversity”
○ data copies stored on machines in different localities

● During failures, diversity can be sacrificed in favor of replica 
count

● Replication constraints
○ ALTER DATABASE mydb CONFIGURE ZONE USING 

constraints='[+region=EU]'

○ Applied at any level (cluster, database, table, row)

CockroachDB - Locality Awareness



Control Plane Approaches



● Rook orchestrates at the level of a single cluster
● We still need a “global orchestrator” that spans clusters 

and clouds to enable true global data
● Could deploy all components of a global data plane like 

EdgeFS across clusters
● Could setup replication/mirroring/federation across 

clusters for local cluster storage systems like Ceph

Global Storage Orchestration



● This would be the control plane for global storage 
systems

● Could orchestrate movement of data and automate 
disaster recovery and failover

● A critical piece of infrastructure for this is a multi 
cluster and multi-cloud control plane

Global Control Plane



● Templates: representation of a resource common across clusters
● Placement: which clusters the resource is intended to appear in
● Overrides: define per-cluster field-level variation to apply to the 

template
● Propagation: Distributes resources amongst federated clusters

Kubefed (Federation v2)



● Extends Kubernetes and spans multiple clouds and clusters
● Deploys infrastructure, platform services, and applications
● Smart scheduler to globally optimize placement
● Portable resource abstractions
● Open source and community driven

○ crossplane.io

Crossplane

https://crossplane.io


● EKS clusters in separate regions (global distribution)
● Rook creates EdgeFS cluster in both EKS
● Each EdgeFS cluster exposes S3 service and bucket
● ISGW link between EdgeFS clusters - bi-directional sync
● AWS S3 bucket with Lambda function for bucket events

○ Syncs event to EdgeFS bucket in 1 of the EKS clusters
○ ISGW syncs event to other EdgeFS in other cluster

● Google Cloud also supported, Azure is in progress
○ all Clouds could be stitched together seamlessly

Example Global Rook-EdgeFS



Example Global Rook-EdgeFS

File

PUT

Lambda

EKS cluster

East Region

EdgeFS

S3 ISGW

EdgeFS

S3ISGW

EKS cluster

West Region



Demo

Globally Distributed 
Rook-EdgeFS clusters

Thanks to Dmitry Yusupov and Ilya Grafutko from EdgeFS team



● Contribute to Rook and Crossplane
○ https://rook.io/
○ https://crossplane.io/

● Slack
○ https://slack.rook.io/
○ https://slack.crossplane.io/

● Twitter - @rook_io & @crossplane_io
● Forums - rook-dev & crossplane-dev on google groups
● Community Meetings

How to get involved?

https://rook.io/
https://crossplane.io/
https://slack.rook.io/
https://slack.crossplane.io/


Rook Deep Dive
Wednesday, 11:55 @ Hall 8.1 G3

Meet the Maintainers
Wednesday, 12:30 @ CNCF Answer Bar

Keep the Space Shuttle Flying: Writing Robust 
Operators

Wednesday, 15:55 @ Hall 8.1 G2

Rook, Ceph, and ARM: A Caffeinated Tutorial
Wednesday, 16:45 @ Hall 8.0 D2

Rook sessions at Kubecon



Thank you!
https://rook.io/

https://crossplane.io/

https://rook.io/

