
Building images
efficiently and securely
on Kubernetes with BuildKit
Akihiro Suda, NTT

1

Raise your hand if you have heard of
BuildKit?

2

Raise your hand if you are already using
BuildKit?

3

Raise your hand if you are already running
BuildKit on Kubernetes?

4

Part 1
Introduction to BuildKit

5

BuildKit: next-generation
docker build

6

● Concurrent multi-stage build

● Efficient caching

● Secure access to private assets

● Flexible syntax for build definition

● Does not require root privileges

BuildKit: next-generation
docker build

7

● BuildKit is included in Docker since v18.06

● But this talk will focus on the standalone version of
BuildKit (buildkitd & buildctl)
○ No dependency on Docker

$ export DOCKER_BUILDKIT=1
$ docker build ...

LLB DAG

8

● LLB is to Dockerfile what LLVM IR is to C

● Typically compiled from Dockerfile

● Accurate dependency expression with DAG structure
○ Efficient caching
○ Concurrent execution

docker-image://alpine

Image

git://foo/bar
docker-image://gcc

Run("apk add ..")Run("make")

LLB DAG

9

FROM golang AS stage0
...
RUN go build –o /foo ...

FROM clang AS stage1
...
RUN clang –o /bar ...

FROM debian AS stage2
COPY --from=stage0 /foo /usr/local/bin/foo
COPY --from=stage1 /bar /usr/local/bin/bar

0 

2 

1 

• DAGはマルチステージDockerfileを用いて記述できる

BuildKit: 次世代 `docker build`

FROM golang AS stage0
...
RUN go build –o /foo ...

FROM clang AS stage1
...
RUN clang –o /bar ...

FROM debian AS stage2
COPY --from=stage0 /foo /usr/local/bin/foo
COPY --from=stage1 /bar /usr/local/bin/bar

0 

2 

1 

https://t.co/aUKqQCVmXa

https://t.co/aUKqQCVmXa

https://t.co/aUKqQCVmXa

https://t.co/aUKqQCVmXa

https://t.co/aUKqQCVmXa

https://t.co/aUKqQCVmXa

https://t.co/aUKqQCVmXa

https://t.co/aUKqQCVmXa

RUN --mount=type=cache

14

● Allows preserving caches of compilers and package
managers

syntax = docker/dockerfile:1.1-experimental
...
RUN --mount=type=cache,target=/root/.cache go build
...

RUN --mount=type=cache

15

● Allows preserving caches of compilers and package
managers

syntax = docker/dockerfile:1.1-experimental
FROM ubuntu
RUN rm -f /etc/apt/apt.conf.d/docker-clean; \
 echo 'Binary::apt::APT::Keep-Downloaded-Packages "true";' > \
 /etc/apt/apt.conf.d/keep-cache
RUN \
 --mount=type=cache,target=/var/cache/apt \
 --mount=type=cache,target=/var/lib/apt \
 apt update && apt install -y gcc

https://t.co/aUKqQCVmXa

https://t.co/aUKqQCVmXa

RUN --mount=type=secret

17

● Allows accessing private assets without leaking
credential in the image

syntax = docker/dockerfile:1.1-experimental
...
RUN --mount=type=secret,id=aws,target=/root/.aws/credentials \
 aws s3 cp s3://... ...

$ buildctl build –-secret id=aws,src=~/.aws/credentials ...

RUN --mount=type=secret

18

● Note: DON’T do this!

...
COPY my_aws_credentials /root/.aws/credentials
RUN aws s3 cp s3://... …
RUN rm -f /root/.aws/credentials
...

RUN --mount=type=secret

19

● Note: DON’T do this either!

$ docker build \
 --build-arg \
 MY_AWS_CREDENTIALS=$(cat ~/.aws/credentials)

RUN --mount=type=ssh

20

● Akin to --mount=type=secret but specific to SSH
● Supports passphrase
syntax = docker/dockerfile:1.1-experimental
...
RUN --mount=type=ssh git clone ssh://github.com/...

$ eval $(ssh-agent)
$ ssh-add ~/.ssh/id_rsa
(Enter your passphrase)
$ buildctl build –-ssh default=$SSH_AUTH_SOCK ...

Non-Dockerfiles

21

● LLB can be also compiled from non-Dockerfiles

● Several languages are being proposed
○ Buildpacks
○ Mockerfile
○ Gockerfile

● You can also create your own language

Buildpacks

22

● Ported from Heroku/CloudFoundry Buildpacks
● No support for Cloud Native Buildpacks yet

syntax = tonistiigi/pack

applications:
- name: myapp
 memory: 128MB
 disk_quota: 256MB
 random-route: true
 buildpack: python_buildpack
 command: python hello.py

Mockerfile

23

● apt-get in highly declarative YAML

syntax = r2d4/mocker
apiVersion: v1alpha1
images:
- name: demo
 from: ubuntu:16.04
 package:
 repo:
 - deb [arch=amd64] http://storage.googleapis.com/bazel-apt stable jdk1.8
 gpg:
 - https://bazel.build/bazel-release.pub.gpg
 install:
 - bazel

Gockerfile

24

● Really simple
● Specific to Golang

syntax = po3rin/gocker
repo: github.com/foo/bar
path: ./cmd/baz
version: v0.0.1

Part 2
Deploying BuildKit on Kubernetes

25

Why build images on Kube?

26

Two kinds of motivation:

1. CI/CD

2. Developer Experience

Why build images on Kube?

27

BK Pod

BK Pod

BK Pod

Some
Pod

Some
webhook

1

1. CI/CD

28poor CPU, RAM, Wi-FI, battery

2. Developer Experience

BK Pod

BK Pod

BK Pod

Some
Pod

Some
webhook

1

1. CI/CD

2

Why build images on Kube?

Issue with docker build on Kube

29

● The common pattern was to run docker Pod with

/var/run/docker.sock hostPath

● Or run docker:dind Pod with

securityContext.privileged

● Both are insecure

Part 2.1
Rootless mode

30

Rootless mode

31

● BuildKit can be executed as a non-root user

● No extra securityContext configuration needed

● Protect the host from potential BuildKit vulns

Demo

32

● Not true since BuildKit v0.4.0

● But you need to disable “Process Sandbox”:

launch buildkitd with

--oci-worker-no-process-sandbox

○ Disable unsharing PIDNS and mounting /proc

33

myth 1: requires
securityContext.privileged

BuildKit daemon

worker container (e.g. RUN gcc …)

Host

Process sandbox

34

myth 1: requires
securityContext.privileged

Process sandbox
(needs to be disabled)

BuildKit daemon
--oci-worker-no-process-sandbox

worker container (e.g. RUN gcc …)

Host

worker container can kill(2) the daemon

Host is still protected

Process sandbox

35

myth 1: requires
securityContext.privileged

● To enable Process Sandbox,

securityContext.procMount needs to be set to

Unmasked

○ Requires Kubernetes v1.12+ with Docker v18.06+ /

containerd v1.2+ / CRI-O v1.12

36

myth 1: requires
securityContext.privileged

37

myth 2: seccomp and AppArmor
need to be disabled

● Not a myth :P

● seccomp (and AppArmor) is typically disabled by

default on Kubernetes anyway

○ In Kubernetes world, seccomp is still in alpha status

and AppArmor is in beta

38

myth 2: seccomp and AppArmor
need to be disabled

39

myth 2: seccomp and AppArmor
need to be disabled

BuildKit daemon

worker container (e.g. RUN gcc …)

Host

seccomp
seccomp (needs to be disabled)

40

myth 2: seccomp and AppArmor
need to be disabled

BuildKit daemon

worker container (e.g. RUN gcc …)

worker containers are still protected with seccomp

Host

seccomp

Future work: gVisor integration?
● gVisor: Yet another Linux kernel implementation in

userspace

● взор (vzor): gVisor-based sandbox for runc containers

https://github.com/tonistiigi/vzor

41Host
runc
взор

BuildKit daemon

https://github.com/tonistiigi/vzor

Future work: gVisor integration?

● No need to disable seccomp/AppArmor for runc

● Can also mitigate kernel vulns

42Host
runc
взор

BuildKit daemon

Future work: gVisor integration?

43

● Currently BuildKit fails with EINVAL due to syscall

incompatibility

● Or User-Mode Linux?

○ Full Linux compatibility

○ 20 yo, still alive :)

Rootless BuildKit vs Kaniko

44

● Kaniko runs as the root but “unprivileged”

○ No need to disable seccomp and AppArmor

● Kaniko might be able to mitigate some vuln that

Rootless BuildKit cannot mitigate - and vice versa

○ Rootless BuildKit might be weak against kernel vulns

○ Kaniko might be weak against runc vulns

Part 2.2
Deployment strategy

45

Deployment strategy

46

DaemonSet?
Depl

oyme
nt?

StatefulSet? Jo
b?

Deployment strategy

47

● Deployment
○ Most typical deployment

● DaemonSet
○ Better Pod placement
○ But unlikely to hit daemon-local cache if you have a

bunch of replicas
○ So might be not always optimal for large clusters w/

complex Dockerfiles

Deployment strategy

48

● StatefulSet
○ Consistent Pod names
○ Good for Consistent Hashing (discussed later)

Deployment strategy

49

● Job (“Daemonless”)
○ buildctl and ephemeral buildkitd in a single

ephemeral Pod
○ No need to manage the life cycles of the daemons
○ Needs PR: moby/buildkit#979

■ or github.com/genuinetools/img (lacks some
upstream features)

https://github.com/moby/buildkit/pull/979
https://github.com/genuinetools/img

How to connect to BuildKit?

50

● BuildKit daemon can listen on TCP (with TLS)

● The entire operation (build & push) just needs a single
gRPC connection

● So you can create Kubernetes Service for
connecting to BuildKit Deployment / DaemonSet /
StatefulSet

How to connect to BuildKit?

51

BK Pod

BK Pod

BK Pod

ServiceClient

gRPC
request

Load-balancing component
(Can be just headless svc with DNSRR)

How to connect to BuildKit?

52

● But you don’t need to necessarily create Service

● buildctl CLI can directly connect to a daemon in a
Pod without Service
○ Internally invokes kubectl exec

How to connect to BuildKit?

53

$ kubectl run \
 --generator=run-pod/v1 \
 --image=moby/buildkit:master-rootless \
 bk -- --oci-worker-no-process-sandbox

$ export BUILDKIT_HOST=kube-pod://bk
$ buildctl build ...

Coming soon:
docker buildx for Kube

54

● docker buildx is the next generation CLI for
integrating BuildKit to Docker
○ Supports building multi-arch image with remote

ARM machines
○ “Bake”: compose-like build

● docker buildx will support connecting to BuildKit
on Kubernetes in the same UX

Part 2.3
Caching

55

Remote cache

56

● Cache can be shared via either registry or shared FS

● Similar to classic docker build --cache-from but
more chance of hitting cache

● For building non-container artifacts (it’s a valid
use-case), FS cache might be useful

Remote cache

57

BK pod

BK pod

BK pod

Service

Load-balancing component
(Can be just headless svc with DNSRR)

RegistryClient

gRPC
request

Image

Cache

Remote cache

58

●Remote cache might be slow compared to the
daemon-local cache

●Example from Part 1 slides:
○ No cache: 2m50s
○ Remote cache: : 36s
○ Daemon-local cache: 0.5s

Consistent hashing

59

●Consistent hashing allows sticking a build request to a
specific Pod in StatefulSet

●So the build request can always hit the daemon-local
cache in the Pod

Consistent hashing

60

buildkitd-1

buildkitd-0

buildkitd-2buildkitd-3

qux/Dockerfile

bar/Dockerfilebaz/Dockerfile

foo/Dockerfile

Consistent hashing

61

buildkitd-1

buildkitd-0

buildkitd-2buildkitd-3

qux/Dockerfile

bar/Dockerfilebaz/Dockerfile

foo/Dockerfile

Consistent hashing

62

buildkitd-1

buildkitd-0

buildkitd-2

qux/Dockerfile

bar/Dockerfilebaz/Dockerfile

foo/Dockerfile

Consistent hashing

63

buildkitd-1

buildkitd-0

buildkitd-2

qux/Dockerfile

bar/Dockerfilebaz/Dockerfile

foo/Dockerfile

quux/Dockerfile

Consistent hashing

64

●Caveats:
○ High I/O overhead on specific set of nodes
○ Some nodes might not be used at all

●See examples/kube-consistent-hashing in the
moby/buildkit repo

Remote cache vs
Consistent hashing?

65

● If your cache registry is fast enough for your
Dockerfiles, remote cache w/ load-balancing might be
better

● If you don’t like transferring cache, consistent hashing
might be better

Part 2.4
CRD

66

CRD

67

Registry

YAML

CRD

68

Container Builder
Interface (CBI)

● The first common build CRD

● Supports Docker, BuildKit, Buildah,
kaniko, img, Google Cloud Container
Builder, Azure Container Registry Build,
and OpenShift S2I

● Complex design with a bunch of
microservices

● Now being deprecated

CRD

69

Container Builder
Interface (CBI) ● Simpler than CBI and easily extensible

● The build component (not entire Knative)
might be going to be deprecated in favor
of Tekton

● Spun out from Knative
● Much more simple and extensible

CRD

70

Container Builder
Interface (CBI) ● Simpler than CBI and easily extensible

● The build component (not entire Knative)
might be going to be deprecated in favor
of Tekton

● Spun out from Knative
● Much more simple and extensible

Tekton

71

apiVersion: tekton.dev/v1alpha1

kind: TaskRun

metadata:

 name: foobar

spec:

 taskRef:

 name: buildkit

...

The interface is same as other image
builders (Buildah, Kaniko, and Makisu)

Tekton

72

 inputs:

 resources:

 - name: source

 resourceSpec:

 type: git

 params:

 - name: url

 value: git@github.com:foo/bar.git

SSH credential is loaded from the Secret
associated with the ServiceAccount

Tekton

73

 outputs:

 resources:

 - name: image

 resourceSpec:

 type: image

 params:

 - name: url

 value: registry.example.com/foo/bar

Registry credential is loaded from the Secret
associated with the ServiceAccount

Wrap-up

● BuildKit is fast and secure
● Several deployment plans, w/ and w/o daemon
● Example:

BuildKit

BuildKit

BuildKit

Headless
Service

Tekton
Controller

BuildKit
Client

DaemonSet

Registry

74

YAML

75

Join us: https://github.com/moby/buildkit

https://github.com/moby/buildkit

