
Build a Kubernetes based cloud-
native storage software from scratch

Sheng Yang, Rancher Labs

Project Longhorn

Open Source
Distributed Block Storage Software

For Kubernetes
https://github.com/rancher/longhorn/

Add persistent storage support to any Kubernetes cluster
kubectl apply –f longhorn.yaml

https://github.com/rancher/longhorn/

Compare Longhorn to legacy storage software

Legacy Storage Software Longhorn

Complex code for storage stack and
controller HA

30k Go code, leveraging proven
Linux storage features (e.g. sparse
file and cgroups QoS) and
Kubernetes Orchestration

• Enterprise-grade distributed block storage software for Kubernetes
• Volume snapshots
• Volume backup and restore
• Live upgrade of Longhorn software without impacting running volumes
• Cross-cluster disaster recovery volume with defined RTO and RPO
• Intuitive UI
• One click installation
• And more features are coming

• QoS, volume resizing, real time performance monitoring, etc

Latest release: Longhorn v0.5.0

Longhorn Architecture - Engine
Container 3

Engine

Replica Replica

Container 1

Engine

ReplicaReplica

Container 2

Engine

ReplicaReplica

Volume Volume Volume

Node 1 Node 2

Orchestrated
by

Kubernetes

Longhorn Architecture - Manager

Longhorn UI

Kubernetes Cluster

Longhorn Manager (Orchestrates all the volumes)

Longhorn API Longhorn API

Engine

Replica 1 Replica 2

Engine

Replica 1 Replica 2

Engine

Replica 1 Replica 2

Kubernetes
API Server

…

Longhorn CSI Plugin
Container Storage Interface API

Cornerstone: Controller Pattern

Node 3Node 2Node 1

Engine

Replica1 Replica2 Replica3

Manager

volume:
spec:

numberOfReplicas: 3

Node 4

Replica3

Replica4

engine:
spec:

replicaList:
Replica1
Replica2

status:
replicaList:

Replica1
Replica2

status:
currentHealthyReplicas:

Replica4

32

Replica3Replica4

Demo

• Automatic node status update
• Make it easier to deal with failed/pressured nodes

• Automatic pod status update
• Log collection after pod failure

• Automatic reattach volume after node reboot

Kubernetes helps to increase resiliency

• The driver interface is keep changing
• Flexvolume, CSI v0.3, CSI v0.4, CSI v1.0

• Finalizers can result in the namespace stuck in `terminating` state
• Informer/Lister cache issue with the Controller Pattern

• Lister can return stale information even with one node

Problems we encountered

• Re-architecture
• Engines and replicas would be run as processes inside the DaemonSet Pods

• Instead of one pod for each engine or replica

• Result
• Speed up volume attach/detach process
• No more worry about Pod per node limitation
• Guaranteed resource for DaemonSet Pods without the risk of scheduling failure

Upcoming Longhorn v0.6.0 (Beta)

Project Longhorn

Open Source
Distributed Block Storage Software

For Kubernetes
https://github.com/rancher/longhorn/

https://github.com/rancher/longhorn/

Sheng Yang
Software Architect, Rancher Labs

/ / : @yasker

sheng.yang@rancher.com

Thank you!

• Currently if you want self-healing with Read-Write-Once volume in
Kubernetes, you will have a problem

• Stateful Set uses different volumes for each Pod
• But it will not automatically create a new pod if the node of the old pod is

down
• Deployment can automatically starts a new pod on a new node if the old

pod’s node failed
• but it won’t detach the volume from the old node, which will result in error

for RWO volume since the volume can only be attached to one node

Workload use RWO volume cannot self-healing
if the node is down

• We’ve tried different ways to implement the user-facing block device
• NBD – Unreliable, easily cause kernel panic
• TCMU – Kernel patch contributed, require on-going maintaince, not mature enough
• FUSE – Too slow

• In the end, we choose to use tgtd/iscsi to implement the block device

Choice of implementing the block device

Engine
processtgtd target

Host namespace

Engine Pod

iscsi initiatorBlock device: /dev/longhorn/vol

Replica 1User Pod

Volume directory: /data

Node 1

Replica 2 Node 2

Replica 3 Node 3Node X

