WebAssembly,
Serverless,
and the Cloud

Kevin Hoffman

The .
Praﬁggla%%nners

About Me Programming
WebAssembly with Rust

Unified Development for Web, Mobile,
and Embedded Applications

Distributed Systems
Microservices

Cloud Native Development
Kubernetes

<

Kevin Hoffman
edited by Andrea Stewart

ANYTX T BA. Mot A EAHE

Agenda

Intro to WebAssembly
Defining Serverless
WebAssembly + Serverless
Introducing Waxosuit

Introduction to
WebAssembly

T2

Definition

A binary instruction format
for a stack-based virtual
machine. Wasm is designed
as a portable target for
compilation of high-level
languages like C/C++/Rust,
enabling deployment on the
web for client and server
applications -
webassembly.org

Portable

Efficient (Stack VM)
"Write once run
anywhere"

Host agnostic

http://webassembly.org/

Limitations

Only allowed to access sandboxed memory
All functions accept/return 32/64-bit numbers only
Memory growth can be constrained by host
Host function access determined solely by the host

Advantages

Secure execution
= can't jump to non-existent instruction

Secure and isolated memory

Portability

Small (typically) binaries

Performance

Any* language can compile to Wasm
Any* language can host/interpret Wasm

Raw WebAssembly

—_

{ 132)
.const 42)

(Slhs 132) (Srhs 132) (
.add

Srhs)

S1lhs)

1
2
3
4
5
6
7
8

"helloWorld"
lladdll (1))

No one wants to write code like this for real applications.

Defining Serverless

Serverless

Any workload that does not own
the endpoints through which it
communicates and is agnostic to
the process in which it is hosted.

Common, but optional:

e Scale-to-Zero
e Run-once / Batch Style
e Single Function

Examples

e AWS Lambda

e Google Cloud Functions
e Azure Serverless

e OpenFaaS

e Knative

e WebAssembly

WebAssembly and

Serverless
Ecosystem Status

WebAssembly Innovation

Cranelift - Mozilla code generator
Lucet

= Early stages, compile & run Wasm
= Built on Cranelift
= Powers Fastly Terrarium

Wasmer Runtime

m Rust
m J|T
= Relies on Cranelift
= Wwapm
Cloudflare - WebAssembly Workers

Escaping the Sandbox

wasm

wasm

@

Trends*

Using Wasm as intermediate format
= Convert to native to run

Portability over sandbox/safety

JavaScript and In-browser experience over server
hosting

Focus on escaping sandbox, not embracing it
Not enough focus on developer productivity &
experience

Introducing Waxosuit

Waxosuit

A secure WebAssembly
runtime environment for
enterprise-grade, cloud-native
applications with a focus on
productivity and developer
experience.

WebAssembly S & 85

Where We Spend Our Time

Boilerplate Features Boilerplate Features

TODAY TOMORROW
WebAssembly + Waxosuit

Waxosuit Components

RPC-style standard for Wasm<->Host Comms
Security standards for Wasm modules

Host runtime
Implementation of Wasm «— Host comm standard

Reqistry for wascap-signed modules
Can host any module, not just Waxosuit's

Wascap

Embedded JWT

Verifiable Provenance

Claims attest to capabilities module can use
Other claims: tags, version, etc.

Protobuf Envelopes: Command / Event
Payload : protobuf encoded
Guest module required to implement allocator

Any Wasm module can be a guest
Any Wasm-interpreting language can be a host

Waxosuit

Fast WebAssembly execution runtime (wasmer) []
Eliminate developer boilerplate for NFRs

Embraces the sandbox, defense in depth.

Build Wasm modules in any language (Rust available today)
Live ("hot"), safe remote update of Wasm file w/no downtime
Enforces capability and provenance claims
Dynamically loads capability providers

= Key-value (Redis), Messaging (NATS), HTTP Server, HTTP Client
= Easily create your own capability providers (c dylib)

Optionally Integrates with Open Policy Agent
m Guest module's JWT sent to OPA for policy evaluation ’

Gantry

Searchable by tags, claims, etc

Verify integrity of all stored modules

Support for semantic versioning

Any host (e.g. waxosuit) can pull modules directly from
reqistry

Will be built with tiny waxosuit-hosted Wasm modules
Used to prove Waxosuit's production readiness

Work not yet started
Contributors welcome! (generate Waxosuit feedback)

Using the Rust Guest SDK

1 handle _call(ctx: &CapabilitiesContext, cmd: &Command) -> Result<Event> {
2 cmd.payload {

3 (p) => p.type url.as ref() {

4 messaging: :TYPE URL DELIVER MESSAGE => process_sensor_ event(ctx, &p.value),
5 core::TYPE URL HEALTH REQUEST => ping reply(),

6 = (Event::bad dispatch(&p.type url)),

7 b

8 => (Event::bad dispatch("no payload")),

9 }

10 }

11

12 process_sensor_event (

13 ctx: &CapabilitiesContext,

14 msg: Into<messaging::DeliverMessage>) -> Result<Event> {
15

16 sensormsg: SensorMessage =

17 serde json::from bytes(&msg.into().message)?;

18

19
20 ctx.kv().set("foo", "bar")?;
21 ctx.msg().publish("topic", SomeMessage::new());
22
23 (Event: :success())

24 }

Architecture

Dispatcher Dispatcher Dispatcher

Multiplexer

m—> SyNChronous

WebAssembly Module

Waxosuit Demo

Sign and Verify

= Dynamically bind capabilities to guest modules
= |ntegrate with OPA

= Run Wasm workloads locally

= Run in Kubernetes

= Perform no-downtime live update

= NONE!

Event-Sourced loT Demo

Sensor Detail

Sensor Event
Processor

Sensor List

Future Plans and Milestones

e More NFRs
= Jaeger/OpenTracing, Prometheus

e Improve Guest SDK for Rust, create Guest SDK for Go
. - secure WebAssembly module registry

e Performance improvements

e More Capability Providers (Blob store, Graph, SQL, etc)
® ‘cargo generate’ template support

e Tutorials, Samples, Documentation

® Waxosuit.io

® \Wascap.io

e github.com/waxosuit

http://waxosuit.io/
http://wascap.io/
http://github.com/waxosuit

Questions

Get Involved, Reach Out, Contribute!

e Twitter -

e WaXosuit.io

e Wascap.io

e github.com/waxosuit

http://waxosuit.io/
http://wascap.io/
http://github.com/waxosuit

