
New Cgroup Subsystem for Buffer Write IO and 
Network RX Control in Kernel

- DongdongChen from Tencent

- open source summit 2019

2019/6/7 1



Agenda:

1、kernel cgroup for buffer write io limit

2、kernel cgroup for net_rx limit

2019/6/7 2



Background:

Kubernetes manage resources on the node with the way of kernel cgroup subsystem, which is very 
import. The target is to guarantee pod’s request resource firstly, but also the pod can borrow from 
other pods when there are free resources temporarily(calling it soft limit), with the mind of not 
influencing node’s stability. Resources such as: 

- Cpu:  cpu cgroup, cpuacct cgroup, cpuset cgroup

- Memory:  memory cgroup

- Blkio:  blkio cgroup，not working for buffer write io

- Network:  tc or iptables, net_cls cgroup controlling net_tx，no cgroup for net_rx

- Disk:  disk_quota

Try to manage all resources in both hard and soft limit, we need two extra cgroup subsystems to 
control buffer write and net_rx in kernel. 

2019/6/7 3



Target:
Disk io could be limited, including buffer write. Also support hard and

soft limit.

Reason:
The current blkio cgroup just support direct io, but no buffer io. Because

the blkio cgroup can not find the original process of the io, it is kworker in
kernel that sync io to disk.

Buffer io limit has been supported by cgroup v2, while the struct has
changed to unified hierarchy, and must use higher kernel version(4.5)

2019/6/7 4

1.1 Buffer write limit - Backgroud



5

Useruser

VFS Page Cache

Filesystem（EXT3/EXT4/XFS）

Block
block 

cgroup

system call

kernel

disk

page

bio

writeback kworker

dirty page

dispatch bio

bio limit

return

How Buffer write work



1.2 Assign block cgroup info to inode

6

- add block cgroup pointer in inode struct

- assign block cgroup info to inode when writing dirty pages

block
super block
inode ...

super block
inode ...

...

bps- sda1

...

bps- sda2

...

...

blkcg-1 blkcg-2 blkcg-x

block
cgroup

bio-1 bio-2
Disk

inode：file related

super block：metadata

block cgroup： cgroup subsystem

(/sys/fs/cgroup/blkio/)

blkcg-x：block cgroup name

bps-sdax：limitation for sdax in

one block cgroup

bio-3



1.3 Apply io less mechanism to memory cgroup

7

- dirty pages：pages with dirty and writeback flag. Pages that has not been synced

to disk is marked dirty, if the page is syncing to disk, then marked writeback.

- writeback thresh：/proc/sys/vm/dirty_writeback_ratio(_bytes)

- dirty thresh：/proc/sys/vm/dirty_ratio(_bytes)

- free run: (writeback thresh + dirty thresh) / 2

dirty pages

writeback thresh

dirty thresh

free run

in：
write dirty page

out：
writeback dirty page to block

Water pool：memory



1.4 Apply io less mechanism to memory cgroup

8

- memory cgroup should know how many pages with dirty and writeback flag in charge

- memory cgroup has its own dirty and writeback thresh level

- apply io less mechanism memory cgroup

VFS

Writeback thresh

Dirty thresh

Free run

memcg-1

Writeback thresh

Dirty thresh

Free run

memcg-2

......

memcg-x

Block

Memory

check if should sleep

wake up flusher



1.5 Writeback kworker should know memory cgroup

9

- use global bitmap to mark if the memory cgroup should sync dirty pages

- mark bitmap to 1 when memory cgroup has too many dirty pages

- writeback kworker check bitmap and clear bitmap to 0 when syncing io

memory cgroup1

memory cgroup2

......

......0 1 0 1 1

Memory

Block
Writeback kworker

bdi-xx:xx

mark bitmap, if too many pages check and clear bitmap

wake up flusher

Memory Cgroup Bitmap

flush dirty pages



1.6 Buffer write soft limit

10

(1) every block cgroup has two token

buckets: assured and ceil

(2) every block cgroup has the color

attribute, which Green indicates both the

two buckets have token, and Yellow

indicates the assured bucket has no token,

while the ceil bucket still has token, the Red

indicates none of the two buckets have

token

(3) every block cgroup has an attribute of

timestamp to dispatch bio for next time

according bps limitation

(4) all block cgroup with green color related

to the same disk are organized by list, and

all block cgroup with yellow color related

to the same disk are organized by red-black

tree

(5) when dispatching bio, all block cgroup

with green color should be checked, while

for yellow list, block cgroup can borrow

more resources with higher priority by the

way of ‘Deficit Round Robin’



1.7 Buffer write limit - data

11

5Mbps vs10Mbps concurrency with different start time



1.8 Buffer write limit - data

12

assured=1Mbps,   ceil=50Mbps vs 

assured=10Mbps, ceil=70Mbps

Block cgroup with
higher assured bps
limitation(higher 
priority) could borrow
more resources



2.1 Net_rx limit - background

Target:

Net_rx could be limited by cgroup with less package dropped, also should

support hard and soft limit

Current net_rx control:

- tc egress matching dst ip

- tc policing(ingress)

- IFB(Intermediate Functional Block device), mirroring net_rx to net_tx

2019/6/7 13



2.1 Net_rx limit - background

（1）use iptables or net_cls to tag
network package

（2）use tc command to limit
network bandwidth

（3）for net_rx, there is no specific
process info when passing to TC

（4）IFB, mirroring net_rx to net_tx,
may consume more cpu

（5）drop the package when net_rx
has been limited, increasing network
congestion

2019/6/7 14



2.2 Net_rx limit
Net_rx control:

（1）add net_rx control during 
receiving socket buffer, by the way of 
token bucket

（2）check if should drop network 
package according token number

（3）adjust window size before 
transmitting socket buffer,  notify the 
other end to send slowly

（3）you can assign processes into 
different cgroup to control net_rx, 
not ip:port

（4）the requested net_rx resource 
will be assured

（5）the net_rx cgroup can borrow 
when other cgroups have free 
resources

（6）when more cgroups share free 
resources, the borrowed resource will 
be divided according priority

2019/6/7 15



2019/6/7 16

2.2 Net_rx limit – soft

(1) there is  a root cgroup assigning 
the total limitation value, the 
summary of other sub cgroups should 
not exceed the value

(2) all cgroup has its own token 
bucket. The root cgroup’s token is the 
remaining resources without all sub 
cgroups

(3) When borrowing, the cgroup with 
higher priority could share more 
resources



2.3 Net_rx limit – data

2019/6/7 17

ceil=60M

bps=10M, priority=0

bps=40M, priority=5

Free resources of 10M

ceil=60M

bps=10M, priority=0

bps=50M, priority=0

No free resources



Thank you

2019/6/7 18


