
Performing Infrastructure
Migrations

@MELANIECEBULA / JUNE 2019 / KUBECON CHINA

at Airbnb Scale

Who am I?

@MELANIECEBULA

AIRBNB CASE STUDY

Migrations: Airbnb Case Study
@MELANIECEBULA

70% of services
in kubernetes

@MELANIECEBULA

Migrations: Airbnb Case Study
@MELANIECEBULA

300+ critical services
in kubernetes

@MELANIECEBULA

Migrations: Airbnb Case Study
@MELANIECEBULA

WHAT ARE MIGRATIONS

• non-cloud to cloud

• VMs to containers

• configuration management to orchestration

• API framework changes (ex: circuit breaking, request throttling)

• new CI, build, or deploy system

• new service proxy or service mesh

• new language/framework version

• security patches

• … and more!

@MELANIECEBULA

Example Migrations
@MELANIECEBULA

Migrations
“LOW” TO “HIGH” EFFORT

low effort high effort

security patch upgrade JVM version

API framework change new CI system

new service mesh

non-cloud to cloud

orchestration (k8s)

VMs to containers

new CD system

deprecate endpoint

new storage system
language upgrade

OS upgrade

@MELANIECEBULA

Migrations
“URGENT” AND “DIS CRETIONARY”

urgent discretionary

security patch upgrade JVM version

API framework change

new CI systemnew service mesh non-cloud to cloud

orchestration (k8s)

VMs to containers
new CD system

deprecate endpoint
new storage system language upgrade

OS upgrade

@MELANIECEBULA

Migrations
NEED AT “LOW” VS “HIGH” S CALE

low scale high scale

security patch

upgrade JVM version

API framework changenew CI system new service mesh

non-cloud to cloud orchestration (k8s)

VMs to containers

new CD system

deprecate endpoint

new storage system

language upgrade

OS upgrade

@MELANIECEBULA

Migrations
ARE MULTIDIMENSIONAL

low scale high scale

discretionary

urgent

low effort

high effort

@MELANIECEBULA

Migrations
ARE MULTIDIMENSIONAL

scale

urgency
effort

@MELANIECEBULA

WHY ARE MIGRATIONS
IMP ORTANT

Migrations reduce tech debt
@MELANIECEBULA

tech debt

time

migration

• low developer velocity

• slower CI, builds, deploys

• non-reproducibility

• reduced resiliency

• hitting scaling limits

• networking issues

• security holes

• outdated language/framework version

• end-of-life systems

• … and more!

@MELANIECEBULA

Examples of tech debt

Migrations are the sole lever to
systematically create technical leverage

at scale

MIGRATION STRATEGIES

MIGRATION TYPES

Migration types

component update

system move

infrastructure rewrite
• component: upgrades, patches, refactors

• system: move from one system to another

• infrastructure: rewrite underlying infra

@MELANIECEBULA

Migration types
@MELANIECEBULA

security patch

change CI system

legacy cloud to k8s
• component: security patch, upgrade

ruby, upgrade ubuntu, deprecate
endpoint

• system: new CI/CD system, new
build system, deployment pipelines,
new proxy, new load balancer, new
service mesh, new storage

• infrastructure: move to cloud,
containerization, k8s, change cloud
provider

AIRBNB EXAMPLE

Migration types
@MELANIECEBULA

component update

system move

infrastructure rewrite
• know which type you’re dealing with

• exponentially increasing complexity for
each type

• more complex means more resourcing
required and more risk

STRATEGIES

MIGRATION SEQUENCING

Sequenced Migrations
@MELANIECEBULA

legacy cloud to k8s
• complex migrations likely have

dependent migrations

• requires planning: migration
sequencing

• or infrequent cascading migrations
and inefficient simultaneous
migrations component update

system move

infrastructure rewrite

Cascading Migrations
@MELANIECEBULA

“ideal migration
state”• infrequent migrations can cause a

rewrite or cascading migrations

• because small incremental changes
are not made, a rewrite is required to
get to the ideal end state

• cascading complexity means higher
risk overall

unexpected
dependent migration

unexpected
dependent migration

cascading migrations

Cascading Migrations
@MELANIECEBULA

k8s migration• going from non-cloud to k8s

• for high availabilty, consider
completing incremental migrations
sequentially

migration to cloud

migration to
containerscascading migrations

EXAMPLE

Simultaneous Migrations
@MELANIECEBULA

migration A
• inefficient migrations can cause

overall migration velocity to slow
down and leads to simultaneous
migrations

• simultaneous migrations don’t
necessarily depend on each other

• but they do affect the overall
complexity of the system and
introduce additional risk

migration B

migration C

simultaneous migrations

Simultaneous Migrations
@MELANIECEBULA

deployment
pipelines

• are these migrations really
independent?

• could each migration be making
assumptions about your system?

• does your migration need to support
a mixed state from another
migration?

new CI system

k8s migration

simultaneous migrations

EXAMPLE

Sequenced Migrations
@MELANIECEBULA

migration A

• a minor migration now can become
an infrastructure rewrite later

• make migration frequent and
efficient

• tightly scoped migrations are easier

• sequenced migrations are safer

migration B migration C

sequenced migrations

STRATEGIES

Sequenced Migrations
@MELANIECEBULA

migration A

• lower risk migrations

• requires more planning and time

• can parallelize migrations without
dependencies

migration B migration C

sequenced migrations

STRATEGIES

Sequenced Migrations
@MELANIECEBULA

JVM upgrade

• start with JVM upgrade and service
discovery layer in parallel

• then complete containerization effort
new service

discovery layer

k8s migration

airbnb example

containerization
effort

EXAMPLE

Prioritized Migrations
@MELANIECEBULA

migrate to
“infrastructure as

code”

• prioritize migrations that reduce or
simplify further migrations

• example: migrate to “infrastructure as
code” first

• following migrations are now code
refactors

refactor code refactor code

example prioritization

STRATEGIES

MIGRATION AT S CALE

that new service mesh you were thinking about
IS SUDDENLY VERY URGENT

scale

urgency
effort

@MELANIECEBULA

that new service mesh you were thinking about
IS SUDDENLY VERY URGENT

scale

urgency
effort

you are here

@MELANIECEBULA

Migration at scale

scale

effort

• scale can introduce increased load or
traffic

urgency

@MELANIECEBULA

Migration at scale

scale

effort

• when not planned for, this can
introduce forced urgency

urgency

@MELANIECEBULA

Migration at scale

scale

effort

• operating at scale can means you
need to migrate more services,
databases, etc

• increased effort comes from
number of surface to migrate and
complexity

urgency

@MELANIECEBULA

Migration at scale

scale

effort

• you want to switch from using
HAProxy to Envoy Proxy

• you have exponentially more
services and edges

• issues with HAProxy compound with
more edges

urgency

EXAMPLE

@MELANIECEBULA

Migration at scale

scale

effort

• forecast expected load

• stress test systems for actual load

• get ahead of the problem with long-
term planning before it becomes
firefighting

urgency

STRATEGIES

@MELANIECEBULA

Migration at scale

scale

effort

• make time work for you

• deprecate the old thing first

• make the new approach the default

urgency

STRATEGIES

@MELANIECEBULA

Airbnb example:
• moving monolithic service configuration to their

service codebases
• exponentially more services are being created
• create a service generator that generates services

using new approach

make the new
approach
THE DEFAULT

@MELANIECEBULA

MIGRATION OVERHE AD

Migration overhead
@MELANIECEBULA

overhead

time

migration start

unfinished migration

migration end

migrating is an explicit tradeoff of taking on overhead
now to reduce worse overhead later.

@MELANIECEBULA

Migration overhead

• for those running the migration effort

• for those migrating to the “new” thing

• for those maintaining both the “new” and “old” thing

@MELANIECEBULA

Migration overhead

scale

effort

• you want to switch from using
HAProxy to Envoy Proxy

• you have exponentially more
services and edges

• you have more complexity with
different use cases (ex: HTTP, TCP)

• you’re patching HAProxy while
building out Envoy Proxy (maintaining
mixed state) urgency

EXAMPLE

@MELANIECEBULA

10%

90%

Migration overhead: what developers want

make progress on their thing

reduce tech debt via migration

@MELANIECEBULA

90%

10%

Migration overhead: what developers get

working on all 40

“small” migration asks

make progress on their thing

@MELANIECEBULA

Unfinished migrations

working on all “small” migration asks

worsening tech debt

start a new migration

migration is not 100% finished

@MELANIECEBULA

Unfinished migrations

working on all “small” migration asks

worsening tech debt

start a new migration

migration is not 100% finished

😱

@MELANIECEBULA

B

I

N

G

O

Unfinished migrations
WORST BING O EVER

• future migrations are now harder

• tech debt is now worse instead of better

• bugs, regressions, edge cases (BINGO)

your infrastructure state diagram

@MELANIECEBULA

unfinished migrations make tech debt worse.

@MELANIECEBULA

Migration overhead

• develop abstractions over the
infrastructure you migrate

• make the current migration easier

• avoid leaky abstractions

• makes future migrations easier

STRATEGIES

@MELANIECEBULA

P

abstraction

@MELANIECEBULA

kubectl
apply

Production
Deployment

Canary
Deployment

Production
ConfigMap

Canary
ConfigMap

Production
Service

Canary
Service

kubernetes cluster

Dev
Deployment

Dev
ConfigMap

Dev

 Service

kubernetes config files

AIRBNB EXAMPLE

Project

Apps

Containers

Files

Volumes

Dockerfile

kube-gen

generate
kubectl
apply

kubernetes cluster

@MELANIECEBULA

kubectl
apply

Production
Deployment

Canary
Deployment

Production
ConfigMap

Canary
ConfigMap

Production
Service

Canary
Service

Dev
Deployment

Dev
ConfigMap

Dev

 Service

kubernetes config files

generating k8s configs

Project

Apps

Containers

Files

Volumes

Dockerfile

kube-gen

generate
kubectl
apply

kubernetes cluster

@MELANIECEBULA

kubectl
apply

Production
Deployment

Canary
Deployment

Production
ConfigMap

Canary
ConfigMap

Production
Service

Canary
Service

Dev
Deployment

Dev
ConfigMap

Dev

 Service

kubernetes config files
abstraction

generating k8s configs

service-

manifest.yml

@MELANIECEBULA

kubernetes config files

better abstraction?

chef config files the next thing

time

service-

manifest.yml

@MELANIECEBULA

envoy proxy

better abstraction?

smartstack the next thing

time

Migration overhead

• standardize on the 90% use case

• automatically migrate for the
standard use case

• migrate under an abstraction layer

• migrate programmatically as a code
refactor

STRATEGIES

@MELANIECEBULA

How do we migrate programmatically?
@MELANIECEBULA

• service configuration lives
alongside application code

• many simple migrations are
automated refactors

• refactor process is a
collection of modular
scripts that cover refactor
lifecycle

list-pr-urls.py

get-repos.py

update-
prs.py

refactor.py

close.py

status.py

refactorator

The lifecycle of a refactor

Checks out repo, finds
project, runs refactor
job, tags owners,
creates PR

Comments on the PR,
reminding owners to
verify, edit, and merge
the PR

Merges the PR with
different levels of force

Run Refactor MergeUpdate

@MELANIECEBULA

What do we migrate programmatically?

• configuration upgrades (ex: k8s
version)

• base image upgrades

• security patches

• changing CI/CD system

• deprecating configuration feature

• migrating monolithic configuration to
service code

EXAMPLES

@MELANIECEBULA

MIGRATION PRO GRAM

Migration strategy: make one person do it

one engineer enables
and completes entire
migration

Make one person
do all of it

@MELANIECEBULA

Migration strategy: make one person do it
@MELANIECEBULA

pros:

• very tight feedback loop for gaps in
the migration process

• easy to track and finish

cons:

• scale makes this an impossible long-
term strategy

Migration strategy: make devs do all of it

devs are given
timelines and asked to
self-serve migration
before deadline

Make devs
do all of it

@MELANIECEBULA

Migration strategy: make devs do all of it
@MELANIECEBULA

pros:

• very low overhead for overwhelmed
infra team

• distributed effort

cons:

• no feedback loop for unexpected
migration blockers / risks

• migrations left unfinished

Migration strategy: an actual migration program

migration team owns
migration end-to-end
and partners with
leadership and devs to
finish

Create a migration program

@MELANIECEBULA

Migration strategy: an actual migration program
@MELANIECEBULA

pros:

• migration can be systematically
enabled and vetted

• migration can be sequenced with
others

• tight feedback loop for gaps in the
migration process

• distributed effort

• easy to track and finish

MIGRATION LIFECYCLE:
VALIDATE PHASE

Validate Phase
D OES IT WORK?

• a design document

• a prototype

• tie in with overall roadmap

• stress test with early users

• iterate until… you’re convinced you’ve fully validated the technology

@MELANIECEBULA

Validate Phase
AIRBNB EXAMPLE

• k8s design document

• a prototype (cluster, simple k8s service)

• tie in with service discovery migration plan

• stress test with high-latency low-thoroughput services

@MELANIECEBULA

MIGRATION LIFECYCLE:
ENABLE PHASE

Enable Phase
MAKE THE MIGRATION WORK

• build tooling

• build abstraction layer

• make the new thing the default

• write documentation & code labs

• programmatically migrate the 90%

• iterate until… you’re convinced you’ve fully enabled the migration

@MELANIECEBULA

Enable Phase
AIRBNB EXAMPLE

• new project tool, CLI tool, integration with CI/CD tooling

• k8s abstraction layer

• new services are created with new project tool

• docs, code labs, and training classes

• migration tooling

@MELANIECEBULA

MIGRATION LIFECYCLE:
FINISH PHASE

Finish Phase
IS EVERYTHING CUT OVER?

• migration plan and sequencing

• programmatically migrate services

• engage with leadership

• set and track across migration goals

• work with devs to identify ongoing risks & blockers

• be prepared for migrations to get harder to finish towards the end

• iterate until… you’ve fully migrated to the new system

@MELANIECEBULA

Finish Phase
AIRBNB EXAMPLE

• phased migrations to k8s

• engage with leadership across business units (dev teams)

• set and track across migration company goals

• TPM & PM work with devs to identify ongoing risks & blockers

• migration-specific documentation & tooling (80% of dev services)

• eng runs office hours to help with tricky migrations

• still working on this phase!

@MELANIECEBULA

1. identify migration type to determine overall complexity and risk

2. run frequent, efficient, and tightly-scoped migrations

3. sequence, prioritize, and parallelize migrations

4. long-term planning, forecasting, and stress-testing to avoid surprise migrations

5. make the new approach the default

6. fully finish migrations to reduce tech debt

7. develop abstractions over infrastructure

8. run migrations as code refactors

9. run a migration program with a migration lifecycle

10. iterate on your migration to ensure its fully validated, enabled, and finished

@MELANIECEBULA

10 Takeaways

