

From Secure Container to Secure Service
Xu Wang & Fupan Li, Ant Financial

Back to KubeCon NA 2018

We summarized the
progress.

We talked about the
overhead and other issues.

And we predicted the
secure containers is going
to production in 2019.

Additional Background

Long tutorial in KubeCon
NA 2018 by Lei & Me

Hands-on: K8s + containerd
+ Kata Containers

Deck and Video:
https://kccna18.sched.com/event/GrZN/tutorial-
katacontainers-the-hard-way-kubernetes-containerd-
katacontainers-lei-zhang-alibaba-xu-wang-hyperhq-limited-
seating-available-see-description-for-details

"The only real solution to security is to admit that bugs
happen, and then mitigate them by having multiple layers.”

---Linus Torvalds (LinuxCon NA 2015, Seattle)

Container Runtimes on Linux

Process A Process B Process C

Filter:
• Seccomp• MAC• CAPS

Namespaces

Filter:
• Seccomp• MAC• CAPS

Namespaces

Filter:
• Seccomp• MAC• CAPS

Namespaces

Linux Kernel

CPU Memory Network Storage

Linux Containers
By Process Isolation

Virtual Machine

Linux Kernel

Namespaces

Process A

Linux Kernel A

VMM (Qemu, Firecracker…)

Virtual Machine

Namespaces

Process B

Linux Kernel B

VMM (Qemu, Firecracker…)

Virtual Machine

Namespaces

Process C

Linux Kernel C

VMM (Qemu, Firecracker…)

Linux Kernel

Platform
(KVM or ptrace)

Sentry
(Kernel)

Process A

cgroups

Platform
(KVM or ptrace)

Sentry
(Kernel)

Process B

cgroups

Platform
(KVM or ptrace)

Sentry
(Kernel)

Process C

cgroups

Kata Containers
(Secure Container)

gVisor
(Secure Container)

• Independent kernel for each POD sandbox
• Resource Isolation + Security Isolation

A Brief History of Kata Containers
May 2015:
Clear Containers and runV open
sourced

Dec 2017:
Clear Containers and runV merged
into Kata Containers and hosted in
OpenStack Foundation as the first
Pilot Project

Apr 2019:
Kata Containers was confirmed by foundation
board as the second project of OpenStack
Foundation

May 2018
1.0.0

Jul 2018
1.1.0

Aug 2018
1.2.0

Sep 2018
1.3.0

Nov 2018
1.4.0

Jan 2019
1.5.0

Mar 2019
1.6.0

May 2019
1.7.0

Updates since KubeCon NA 2018

Shim v2 Support in Kata 1.5

Eliminated 2N+1 helper processes

FireCracker Support in Kata 1.5

Firecracker
● Open sourced by AWS - Nov 2018
● From their GitHub page:

“Firecracker has a minimalist design. It excludes unnecessary devices and guest-facing
functionality to reduce the memory footprint and attack surface area of each microVM. This
improves security, decreases the startup time, and increases hardware utilization.”

Kata + Firecracker integration status
● With minimal design of the VMM, there are limitations when using Kata+Firecracker:

○ No filesystem sharing with host
○ No hardware device support
○ No dynamic resizing of the guest (vCPU/memory hotplug)

Work with Kubernetes RuntimeClass

- On each node, you can
run workloads which will
utilize runc, kata-qemu
and kata-firecracker.

- You can select your
method of isolation on a
per-workload (per-pod)
basis

Virtio-fs Support in Kata 1.7

• Origin from RedHat

• Based on fuse, better POSIX
compatibility

• VirtIO based, native design for
virtualization (not another network FS)

• With DAX, better performance and
lower memory overhead in guests

• Userspace virtiofs daemon, more
flexible

Host Kernel

Shared Directory

virtiofsd
(userspace)

virtio_fs.koGuest
Kernel

Fuse over vring

Container App

master vhost user

DAX

VMM

virtio-fs

Summary of the Progress

• Better integration with Kubernetes

• Less memory overhead

• Improvements on filesystem sharing

Well, Security is an End-to-End Issue

We need not only secure container runtime, but secure
services in Financial Scenarios.

ServiceMesh:
Evolution of the Financial Grade Infrastructure

Service

Business Logic

lib
Protocol Encoder

Service Discovery

Rating Limit

Load Balance

Traffic Routing

Service

Business Logic

lib Protocol Encoder

进程分拆Sidecar

Service Discovery

Rating Limit

Load Balance

Traffic Routing

Pod Pod
In Secure Container

User Container

User Container

User Container
Or
Part of Infra?

Virtual Machine

App A

Linux Kernel B

VMM (Qemu, Firecracker…)

Virtual Machine

App B

Linux Kernel C

VMM (Qemu, Firecracker…)

Node

Service Mesh + Kata Containers

Virtual Machine

App C

Linux Kernel B

VMM (Qemu, Firecracker…)

Virtual Machine

App D

Linux Kernel C

VMM (Qemu, Firecracker…)

Node

Data Plane sidecar sidecarsidecar sidecar

Service Mesh (Istio)

Citadel Pilot Mixer

System
Level

Defense
By

Secure Container

Application
Level

Defense
By

Service Mesh

- Identity
- Policy
- AAA
- Encryption

Control Plane

Data Plane

- Secure by default
- Defense in depth
- Zero-trust network

mTLS RBAC

Demo: Kata + Service Mesh
• ServiceMesh Security Mechanisms and Kata Containers

• Enforce mTLS Data Plane for Kata + Istio (video)
https://istio.io/docs/tasks/security/authn-policy/#namespace-wide-policy

• Enable RBAC for ingress traffic for Kata + Istio (video)
https://istio.io/docs/tasks/security/authz-http/#enforcing-namespace-level-access-control

Service A

POD

Pilot Citadel
App TLS Certs

RBAC
Sidecar

Service B

POD

RBAC
Sidecar

Service C
(without Auth)

X
mTLS

Config update

devops

https://istio.io/docs/tasks/security/authn-policy/
https://istio.io/docs/tasks/security/authz-http/

SOFAMesh: Service Mesh Practice in Ant Financial

SOFAMesh

Citadel Pilot Mixer
Control Plane

SOFAMosn
Data Plane

SOFAMesh
● Large-scale Service Mesh Practice
● Based on Istio, with improvements and extensions

● SOFAMosn (in golang) as sidecar to replace envoy
● Migrate mixer to data plane for performance
● Improve Pilot for more flexible service discovery
● Performance improvement of Pilot

● Support RPC：SOFARPC/Dubbo/HSF
● Verified in Ant Financial, and feed back to community
● Open Source: https://github.com/sofastack/sofa-mesh

SOFAMosn
● Not only Service Mesh Sidecar in SOFAMesh
● But also：API Gateway，Ingress Gateway
● Support envoy xDS v2 API
● Open Source: https://github.com/sofastack/sofa-mosn

Mixer

https://github.com/sofastack/sofa-mesh
https://github.com/sofastack/sofa-mosn

POD

Practice: Trusted Identity Service

Citadel Agent
(SDS Server)

Citadel

Sidecar
(SOFAMosn)

APP

Gateway

APP

Secure Sidecar

K8s
API Server

Control Plane

Data Plane

POD POD

SDS

SDS

DaemonSet

openapi

1. Apply
2. Watch

3. Node CR Push by MCP

4. Pod CR Push by
extended SDSTCP

Unix Domain Socket

Trusted Identity Service

Sidecar

Gateway

Watch Secret

CSR Request

Certificate

Trusted Identity

The Next Step

• Current:

• Kata works with Istio / SOFAMesh

• In the Future:

• Mesh sidecar optimization in Kata Context (w/ eBPF etc.)

• And Interoperability with non-kata containers

• Resource isolation between mesh sidecar and user containers

谢谢！ Thank You

