
Efficient and Flexible Virtual Machine
Networking through eBPF

Jason Wang
Principal Software Engineer

June 26th 2019

Efficient and Flexible Virtual Machine Networking through eBPF

2

Outline

● Review
● Problems
● Introduction to eBPF/XDP
● Simple usage of XDP
● Advanced Features: advantages and limitations
● Status
● Q&A

Efficient and Flexible Virtual Machine Networking through eBPF3

Overview of virtual machine networking

OVS

TAP TAP

eth0 eth1

VM VM

vhost vhost

eth0

macv-
tap

macv-
tap

VM VM

vhost vhost

virtio virtio

● Virtio: IPC between host and guest
● Vhost: virtio dataplane in kernel
● TAP: network driver for userspace,

works with OVS/bridge for
complex cases

● Macvtap: stacked device on top of
lower NIC, for simple use cases

Efficient and Flexible Virtual Machine Networking through eBPF4

Issues

● Efficiency:
– Slower than userspace datapath or VF
– Only get 10% of userspace if measured by PPS
– No fundamental barrier but why?

● Flexibility:
– New features were added slowly

● Developing kernel module is hard
● Need new kernel/qemu/host to get new feature

– Mew features just new new firmware (virtual)

Efficient and Flexible Virtual Machine Networking through eBPF5

eBPF introduction

● Generic, efficient, secure in-kernel (Linux) virtual
machine. Programs are injected and attached in the
kernel, event-based.

● extend BPF
– Evolution from classical BPF, assembly-like,

interpreter
– Effective: more registers and instructions, larger

stack
– Read or write access to context (packets for net)
– LLVM backend
– safety: in kernel verifier
– JIT(Just in time)
– Bpf() syscall for managing program

0: (79) r1 = *(u64 *)(r1 +8)
1: (7b) *(u64 *)(r10 -8) = r1
2: (b7) r1 = 1
3: (7b) *(u64 *)(r10 -16) = r1
4: (18) r1 =
0xffff8801a6098a00
6: (bf) r2 = r10
7: (07) r2 += -8
8: (85) call
bpf_map_lookup_elem#1
9: (15) if r0 == 0x0 goto
pc+3

Efficient and Flexible Virtual Machine Networking through eBPF

User program
(tc/ip/bcc ...)

6

eBPF introduction (cont)

userspace

kernel

bpf_prog.c

bpf_prog.o

LLVM/clang

User control
program

bpf() syscall

JIT

verifier

BPF program
attached and run

MAPs:
Array,

Hashmap,
...

socket

XDP TC kprobe tracepoint

Kernel
helpers

Efficient and Flexible Virtual Machine Networking through eBPF

XDP – eXpressed DataPath

userspace

kernel

eth0

XDP

Network stack

tc ingress tc egress

eth1

DPDK

XDP
sockets Sockets

XDP_TX

XDP_PASS

XDP_REDIRECT

XDP_REDIRECT

XDP_DROP

Smart NIC
eBPF

offloading

HW

Efficient and Flexible Virtual Machine Networking through eBPF8

XDP – Why it was efficient and flexible?

● Efficiency:
– Earliest point: before networking stack
– Lightweight metadata
– Driver specific optimization

● Simple assumption: e.g page per frame
● Page recycling: either vendor specific or through page pool
● Batching: devmap

– Offloading
● Flexible:

– Co-operate with exist kernel networking stack
● Management, configuration, debugging, visibility, mature protocol stack

– Separation policy (either in userspace or well defined exist in kernel) from
mechanism (datapath)

– Generic mode fallback

Efficient and Flexible Virtual Machine Networking through eBPF9

How does XDP can help

TAP TAP

eth0 eth1

VM VM

vhost vhost

virtio

XDP
prog

XDP
prog

XDP
prog

● Virtio-net XDP support accelerates
guest datapath

● TAP XDP support processes
packets early

● Redirect XDP frames between TAP
and another XDP capable NIC to
accelerate host datapath

X
D

P
_

R
E

D
IR

E
C

T

Efficient and Flexible Virtual Machine Networking through eBPF

Performance

drop macswap
0

2

4

6

8

10

12

14

16

18

20

Mpps for simple packet processing with i40e

Guest TC + Host skb

Guest XDP + Host skb

Guest XDP +
XDP_REDIRECT

Guest XDP +
XDP_REDIERCT (linux-next +
nosmap)

Host XDP

64B UDP single flow

Efficient and Flexible Virtual Machine Networking through eBPF

Advanced Features

● bpfilter
● XDP offload
● XDP for stacked device
● OVS XDP datapath
● AF_XDP for VM
● eBPF and vhost

Efficient and Flexible Virtual Machine Networking through eBPF12

bpfilter

● eBPF based backend for iptables

● translate rules of iptables to eBPF and attach to XDP (native, generic or offload)

● bpfilter.ko (to reduce the attack surface)
– ELF file running in userspace
– Based on user mode helpers (UMH)
– Shipped and built from kernel tree, work with modprobe,modinfo
– Special thread

● Only skeleton merged, main logic is RFC

Efficient and Flexible Virtual Machine Networking through eBPF

userspace

kernel

iptables

bpf() syscall

JIT

verifier

BPF program
attached and run

TC

bpfilter internals

Netfilter

bpftiler.ko
Rule

translation

bpf
umh

launcher

Generic XDP native XDP HW (offload)

JIT on major archs, offload,
verifier, transparent to admin,
Write rules in C, ...

Efficient and Flexible Virtual Machine Networking through eBPF14

Offload XDP to host?

host

VM

virtio

XDP
prog

offloaded
XDP prog

● No virtualization overhead
● No virtio overhead
● Packet does not need to enter

guest if it could be handled by
eBPF as fast path ! No datacopy in
this path.

● XDP_PASS as a fallback to
slowpath for the packets can not
be dealt with eBPF/XDP

● Further offload to hardware
(macvtap)

packets

slow path

fast path

Efficient and Flexible Virtual Machine Networking through eBPF

tap/macvtap

15

eBPF transport through virtio

Guest

userspace
program

verifier

vi
rt

io
-n

et

Qemu

prog

JIT

prog

bpf() syscall

bpf()
virtio

eBPF proxy
JIT

verifier

packets

verifier

intercept bpf() through offload ops

bypass guest JIT/verifier

send raw bytecode to Qemu

qemu loads it on host as a proxy

only packet manipulation helpers

funcfuncinkernel
helpers

ifindex

userspace

kernel

map

Guest
FD

Host
FD

X Y

Efficient and Flexible Virtual Machine Networking through eBPF16

Service chaining

vhost0/
TAP0

VM0

vhost1/
TAP1

VM1

vhost2/
TAP2

VM2

vhost3/
TAP3

VM3

eth0 eth1

XDP
prog

offloaded

XDP
prog

native
XDP
prog

offloaded

XDP
prog

native

XDP
prog

offloaded

XDP
prog

native

XDP
prog

offloaded

XDP
prog

native

XDP
prog

slow path

fast path(zc)

Efficient and Flexible Virtual Machine Networking through eBPF17

POC performance

drop macswap
0

2

4

6

8

10

12

14

16

18

20

Mpps for simple packet processing with i40e

Guest TC + Host skb

Guest XDP + Host skb

Guest XDP +
XDP_REDIRECT

Offloaded XDP for TAP(vhost)

Offloaded XDP for
macvtap(NIC)

Host XDP

Efficient and Flexible Virtual Machine Networking through eBPF

VM

18

XDP for stacked device

● Stacked device
– The virtual device that is based on

the function of lower device: bond,
team, macvlan, bridge, OVS,
failover, etc

– Implemented through skb based rx
handler

● Problem:
– native XDP can not run on such

device (but XDP generic)
– But production environment use

them heavily
– Userspace topology logic?

eth0 VF

failover

XDP
prog

XDP
prog

XDP
prog

skbskb skb

skb kernel

userspace

Efficient and Flexible Virtual Machine Networking through eBPF

eth0 eth1

bond0

XDP progXDP prog

XDP prog?

skb skb skb

eth0

macvlan0

XDP prog

skb

container0

tap0

XDP prog

XDP_REDIRECT

RX_HANDLER RX_HANDLER

XDP for stacked device (example)

XDP prog?

macvtap0

RX_HANDLER RX_HANDLER skb

packets

VM

vhost

virtio

Efficient and Flexible Virtual Machine Networking through eBPF

eth0 eth1

bond0

XDP progXDP prog

XDP prog

XDP

eth0

macvlan0 macvtap0

XDP prog

container

tap0

XDP prog

XDP_REDIRECT

XDP rx handler

XDP prog

packets
XDP
RX_HANDLER

XDPXDP

XDP
RX_HANDLER

XDP
RX_HANDLER

XDPXDPXDP XDPXDPXDP

VM

vhost

virtio

Efficient and Flexible Virtual Machine Networking through eBPF

POC Performance

drop
0

2

4

6

8

10

12

14

16

Mpps for simple packet processing with mlx4

macvlan0(XDP generic)

macvlan0(XDP native)

mlx4(XDP native)

64B UDP single flow

perf loss since
macvlan_hash_lookup(), offload
to hardware?

Efficient and Flexible Virtual Machine Networking through eBPF

OVS XDP datapath

● Inspired by OVS TC flower datapath:
● Implement TC flower logic through XDP:

tc-xdp ?
● OVS control load appropriate XDP

program to the interface, or update the
action through maps

● Native XDP for acceleration
● XDP generic for fallback
● Can do things that is not easy for

hardware offload: e.g conntrack
● Limitation: match/action chaining

OVS control

Kernel XDP datapath

VM1VM1VM1VM

NIC

kernel

userspace

HW

Efficient and Flexible Virtual Machine Networking through eBPF23

OVS XDP datapath

OVS control

eth0

tap0

VM0

virtio

XDP
prog

XDP
prog

tap1

VM1

virtio

XDP
prog

xdp-flower add dev eth0 protocol ip \
 skip_generic dst_mac e4:11:22:11:4a:51 src_mac e4:11:22:11:4a:50 \
 action mirred egress redirect dev tap0

XDP-flower

OVS control

XDP_REDIRECT

maps

OVS kernel datapath
XDP_PASS

kernel

userspace

HW

Efficient and Flexible Virtual Machine Networking through eBPF24

AF_XDP (XSK)

● Evolved from AF_PACKET but based on
XDP, up to (20x ?) compares to
AF_PACKET

● Optimized ring layout
– ideas come from virtio 1.1
– unify?

● Redirect XDP frames to socket directly
● Socket were bound to specific queue
● Two modes:

– Zerocopy (driver/vendor support)
– Generic

● Limitation: umem, zc (PIN), packet size
limitation, non zerocopy perf is very
poor, metadata is too simple

AF_XDP
socket

APP

XDP
prog

eth0

XDP_REDIRECT

skb

stack

AF_INET
socket

Legacy
APP

rxq txq rxq txq

umem

DMA

mmap()

Efficient and Flexible Virtual Machine Networking through eBPF

OVS AF_XDP datapath

userspace

kernel

OVS-vswitchd

XDP
prog

XSK XSK

TAP

vhost

VM

virtio

XDP
prog

NIC

XDP_REDIRECT

XDP_REDIRECT

DRV
hardware

For better performance,

Need Zerocopy support in TAP

Still need to go through vhost_net

ofproto

afxdp
netdev

afxdp
netdev

Efficient and Flexible Virtual Machine Networking through eBPF

Qemu

AF_XDP
socket

XDP prog

eth0

XDP_REDIRECT

q q q

VM

XSK PT
device

AF_XDP
socket

APP

XSK PT
backend

umem

AF_XDP passthrough

DMA

● A new kind of network device in guest –
XSK PT(passthrough) device
– When bind to XSK, backend can

setup AF_XDP socket on host
– Guest can drive AF_XDP ring on

host
– Inspired by netmap passthrough

● Guest APP still uses AF_XDP ring layout
and API

● Host AF_XDP speed were preserved
● XSK PT device were only used for:

– Configuration
– Control: start/stop
– Synchronization: kick/interrupt

Efficient and Flexible Virtual Machine Networking through eBPF27

eBPF based vhost datapath

● Problem to solve:
– deal with different ring layout is painful
– bug fixes need restart datapath
– POC for new ring layout

● How about decouple the ring layout specific code out of kernel through eBPF
– Descriptor translation and manipulation being done through eBPF program
– New ring layout was simply implemented by attaching eBPF program, no new code

in kernel
● Challenges:

– eBPF performance
– Batching

Efficient and Flexible Virtual Machine Networking through eBPF28

eBPF based vhost datapath

userspace

kernel

Vhost

XDP
prog

Guest

Qemuvirtio

bytecode for split

bytecode for packed

V
irt

io
-n

et
 d

rv

VIRTIO_F_RING_PACKED

XDP frames

map

vhost_ioctl()

Virtio-net
Device model

Efficient and Flexible Virtual Machine Networking through eBPF

Status

● bpfilter: only skeleton

● Virtio-net XDP offload: POC

● XDP for stacked device: generic path, native path RFC
● OVS XDP datapath: WIP
● OVS AF_XDP datapath: RFC
● AF_XDP (zerocopy) for TAP: RFC
● AF_XDP passthrough: planning
● eBPF base vhost datapath: planning
● Libvirt support: planning

Efficient and Flexible Virtual Machine Networking through eBPF

Reference

● bpfilter: https://lwn.net/Articles/747504/
● virtio-net XDP offload:

https://www.netdevconf.org/0x13/session.html?xdp-offload-with-virtio-net
● XDP for stacked device: https://lwn.net/Articles/762464/
● AF_XDP: Documentation/networking/af_xdp.rst
● OVS AF_XDP: https://mail.openvswitch.org/pipermail/ovs-dev/2019-April/358373.html
● Netmap passthrough:

https://conferences.sigcomm.org/sigcomm/2017/files/tutorial-netmap/02-virtualization.pd
f

https://lwn.net/Articles/747504/
https://www.netdevconf.org/0x13/session.html?xdp-offload-with-virtio-net
https://lwn.net/Articles/762464/
https://mail.openvswitch.org/pipermail/ovs-dev/2019-April/358373.html
https://conferences.sigcomm.org/sigcomm/2017/files/tutorial-netmap/02-virtualization.pdf
https://conferences.sigcomm.org/sigcomm/2017/files/tutorial-netmap/02-virtualization.pdf

THANK YOU

plus.google.com/+RedHat

linkedin.com/company/red-hat

youtube.com/user/
RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

	Red Hat AMQ Streams
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	THANK YOU

