
“Plays Well
With Others”

Composability for Cloud
Native Applications

Steve Judkins
Program Manager, Upbound

@infinitecompute

• It’s easy to manage the
services we build and
deploy in a declarative way
•Active state controllers for
reconciliation
•Containers for our services
•Proven scalability
• It is extensible!

We Kubernetes

• Leverage managed Kubernetes
for your apps
• But use cloud managed services

in production
• Database replication and backups, DR,

elasticity, etc.

• Use advanced cloud provider
functionality like search, AI/ML,
that is a pain to manage in cluster

Modern cloud native applications

What’s wrong with this picture?

• You have dependencies on databases, buckets,
pub/sub, search, monitoring, etc.

• But do you really want all these running in your own
cluster in production?
• Do you want to be paged at midnight? I didn’t

think so!
• Also, your IT DevOps are using a completely different

set of tools to provision & orchestrate cloud services
• It’s a dumpster fire of tools!

Modern applications are composed of more than just the services
you write and own…

Infrastructure Orchestration

Resource Lifecycle Management

Install Upgrades Lifecycle

Application
Components

Basic Cloud
Provider
Services

Differentiated
Cloud Provider
Services

Insights Auto-pilot

Your services
and K8s
cluster

All Cloud
Providers &
Managed
Services

Terraform

Helm

Operator
Framework

This is the
target

CloudFormation

• Based on Kubernetes engine
• That brings cloud provider
services and infrastructure into
Kubernetes
•One API to manage your
infrastructure
• Provide portability for
heterogeneous workloads
beyond containers

Can we solve this in an
elegant way?

Cloud Native Evolution

Level of Abstraction

VMs

Cloud Native Evolution

Containers

Containers
(CaaS)

Workloads

Portability

Portable
Resources

Composability

Elasticity

Cloud
Native
Attributes

Infra
(IaaS)

Modularity

Resiliency

Operability

Functions
(FaaS)

The natural
next step

OpenStack, AWS EC2

Kubernetes: GKE, EKS, ACS

Lambda, GCF

Building on the Kubernetes Engine

● Declarative API
● kubectl native integration as well as other tools, libraries,

and UI
● Rich ecosystem and community growing around

Kubernetes
● Lets apply the lessons learned from container

orchestration to multicloud workloads and resources

Resource lifecycle management

● Custom Resources (CRDs): model cloud provider services
and infrastructure as well as independent cloud offerings

● Custom controllers: provision, configure, scale, monitor,
upgrade, failover, backup, and more

● Active reconciliation: responds to external changes that
deviate from the desired configuration

● Powerful “volume” abstraction in Kubernetes - portability
of stateful applications

● What about other resources? databases, buckets, clusters,
caches, message queues, data pipelines, AI/ML, etc.

● Let’s abstract those too!
● Write once, run anywhere

Portable resource abstractions

Open source multicloud control plane

● Developer composes their app and resources in
a general way
○ Not tightly coupled at app dev time

● Administrator defines environment specifics and
policies

● Modeled as resource claims and resource
classes
○ similar to PVC and StorageClass

● Dynamic (on-demand) provisioning of resources

Separation of concerns

Deconstructed image courtesy of Todd McLellan

http://shop.toddmclellan.com/

GitOps for cloud native apps

• App owner YAML
• Resource Claims
• Workloads

• Administrator YAML
• Resource Classes
• Providers
• Concrete resources

• Dev and Ops converge
• A single app definition for

the stack

Dev Ops

Resource Claim

• App owner YAML
• Resource Claims
• Workloads

• App specifies a cloud
postgreSQL
dependency

Resource Class

• Administrator YAML
• Resource Classes
• Providers
• Concrete resources

• Administrator defines
where PostgreSQL is
dynamically provisioned
• e.g. AWS RDS in

example

● Real world (complex) application
○ Currently a Helm chart
○ 4,800 lines of YAML, 14 Deployments, 3 Jobs, 9 Services, 16

ConfigMaps, etc.
● PostgreSQL, Redis, Object storage
● How can we make this better?

○ CRD - simple config experience
○ Custom controller to generate artifacts
○ Fully automated and portable multi-cloud deployment

GitLab on Crossplane

GitLab on Crossplane

Crossplane

Scheduler

API
Machinery

GitLab
controller

etcd

PostgreSQL
controller

Redis
controller

Bucket
controller

AWS

GCP

Azure

Demo

How to get involved?
• Contribute to Crossplane

• https://github.com/crossplaneio/crossplane/
• https://crossplane.io/

• Slack - https://slack.crossplane.io/
• Twitter - @crossplane_io
• Forums - crossplane-dev on google groups
• Community Meetings - every other Tuesday 9am

Pacific

https://github.com/crossplaneio/crossplane/
https://crossplane.io/
https://slack.crossplane.io/
https://twitter.com/crossplane_io
https://groups.google.com/forum/
https://github.com/crossplaneio/crossplane/

