6
KubeCon | CloudNativeCon
“Plays well c\ OPEN SOURCE SUMMIT

China 2019

With Others” .
Steve Judkins
Program Manager, Upbound

Composability for Cloud B oi1initecompute
Native Applications

REPORT CARD

We

Kubernetes

* It's easy to manage the

services we build and
deploy in a declarative way

e Active state controllers for

reconciliation

e Containers for our services

Proven scala

t is extensib

oility

el

KubeCon | CloudNativeCon

8 E

Modern cloud native applications | e

China 2019

 Leverage managed Kubernetes

for your apps

 But use cloud managed services
in production
 Database replication and backups, DR,
elasticity, etc.
* Use advanced cloud provider
functionality like search, Al/ML,
that is a pain to manage in cluster

on | CloudNativeCon

What's wrong with this picture? 2 e

KubeC:
S OPEN SOURCE SUMMIT

China 2019

Modern applications are composed of more than just the services
you write and own...

* You have dependencies on databases, buckets,
pub/sub, search, monitoring, etc.

« But do you really want all these running in your own
cluster in production?

* Do you want to be paged at midnight? | didn't
think so!

* Also, your IT DevOps are using a completely different
set of tools to provision & orchestrate cloud services

* It's a dumpster fire of tools!

& o

Infrastructure Orchestration

S OPEN SOURCE SUMMIT

China 2019

All Cloud
Providers &
) Managed
Differentiated N Services
Cloud Provider H’
Services
Terraform
, This is the
.. Basic Cloud
Application Provider target
Components Services
CloudFormation

Q Operator
c‘ Framework
'

>

Your services @
and K8s

cluster Helm

Install Upgrades Lifecycle Insights Auto-pilot

Resource Lifecycle Management

Can we solve this in an
elegant way?

 Based on Kubernetes engine

* That brings cloud provider
services and infrastructure into
Kubernetes

* One AP| to manage your
infrastructure

* Provide portability for
neterogeneous workloads
peyond containers

Cloud Native Evolution

Composability

Portable

O Resources

<= The natural
next step

Portability .
Cloud Functions
Native Modularity (FEN)
Attributes
Elasticity
@ Lambda, GCF
Resiliency
@ Kubernetes: GKE, EKS, ACS
Operability @ Openstack, AWS EC2

VMs Containers

Workloads

Level of Abstraction

& o

KubeCon | CloudNativeCon

S OPEN SOURCE SUMMIT

China 2019

Declarative API

kubectl native integration as well as other tools, libraries,

and Ul

Kubernetes

_ets apply the lessons
orchestration to multic

Rich ecosystem and community growing around

earned from container

oud workloads and resources

o Custom Resources (CRDs): model cloud provider services

and infrastructure as well as independent cloud ofterings
o Custom controllers: provision, contigure, scale, monitor,
upgrade, failover, backup, and more
o Active reconciliation: responds to external changes that

deviate from the desired configuration

Powertul "volume"” abstraction in Kubernetes - portability

of stateful applications
What about other resources? databases, buckets, clusters,

caches, message queues, data pipelines, Al/ML, etc.
Let's abstract those too!
Write once, run anywhere

KubeCon | CloudNativeCon

Crossplane ¢ .8

S OPEN SOURCE SUMMIT

China 2019

Open source multicloud control plane

R

Other Cloud Providers
. ©) Google Cloud
cli & tools
Workload /A N
'@' | Scheduler
Kubernetes —% % aws
35 p
D :__5,) P AP| Kubernetes Serverless
Java « | Machinery |[* Resource e, | 33 = &%
& nede Controll -
@ ontroliers Storage Databases Big Data
client libraries - \
4 3rd Pa r'ty Analytics Search Al/ ML
eth Resource
“ Q Controllers Cloud Provider Managed Services
Crossolane #5e elastic =confluent gdatabricks
user interfaces P

DATASTAX® —6- Cockroach ps

Independent Cloud Offerings

& o

Separation of concerns S

China 2019

e Developer composes their app and resources in
a general way

o Not tightly coupled at app dev time
e Administrator defines environment specitics and

policies

e Modeled as resource claims and resource

classes

o similar to PVC and StorageClass

e Dynamic (on-demand) provisioning of resources

Deconstructed image courtesy of Todd McLellan

http://shop.toddmclellan.com/

GitOps for cloud native apps

* App owner YAML
e Resource Claims
 Workloads

 Administrator YAML

e Resource Classes
e Providers
« Concrete resources

* Dev and Ops converge

* A single app definition for
the stack

Dev

@

Ops

App.yaml

—

Stacks.yaml

©

Git Repo

|

Cl Pipeline

v
€20

Cont:

ication

. &

Ap_p
ainers | Gontainer Registry

& o

KubeCon | CloudNativeCon

S OPEN SOURCE SUMMIT

China 2019

. & o
Resource Claim

KubeCon | CloudNativeCon

S OPEN SOURCE SUMMIT

China 2019

° A owner YAML F Example PostgreSQL resource claim using the cloud-postgresql resource class
F)F) apiVersion: storage.crossplane.io/vlalphal
* Resource C|aims kind: PostgreSQLInstance
metadata:
* Workloads

name: cloud-postgresql-claim
namespace: demo

* App specifies a cloud spec:
pOStgreSQL classReference:
name: cloud-postgresql
dependency

namespace: crossplane-system
engineVersion: "9.6"

Resource Class

 Administrator YAML

e Resource Classes
e Providers
« Concrete resources

* Administrator defines
where PostgreSQL is
dynamically provisioned

* e.g. AWS RDS in
example

& o

KubeCon | CloudNativeCon

S OPEN SOURCE SUMMIT

China 2019

ResourceClass that defines the blueprint for how a "standard" RDS instance
should be dynamically provisioned
apiVersion: core.crossplane.io/vlalphal
kind: ResourceClass
metadata:
name: cloud-postgresql
namespace: crossplane-system
parameters:
class: db.t2.small
masterUsername: masteruser
securityGroups: '"sg-ablcdefg,sg-05adsfkajlksdjak"
size: "20"
provisioner: rdsinstance.database.aws.crossplane.io/vlalphal
providerRef:
name: aws—-provider
reclaimPolicy: Delete

GitLab on Crossplane

e Real world (complex) application
o Currently a Helm chart
o 4,800 lines of YAML, 14 Deployments, 3 Jobs, 9 Services, 16
ContigMaps, etc.
e PostgreSQL, Redis, Object storage
e How can we make this better?
o CRD - simple config experience
o Custom controller to generate artifacts

o Fully automated and portable multi-cloud deployment

& o

GitLab on Crossplane o | e

China 2019

\
: Scheduler '
! :
| - N !
: GitLab I
I controller :
I . J
! r N
: API Postgt; reﬁQL :
I . controller
! Machinery L J
; r N\
L N Redis |
I controller !
| _ J :
: eted | [Y !
BN y Bucket ,
| controller I
I \ J |
! 1
\ Crossplane ;!

3 /
S 7

I e e e e B B

KubeCon | CloudNativeCon

S OPEN SOURCE SUMMIT

China 2019

® Crossplane

How to get involved?

® Contribute to Crossplane

* Slack -
* Twitter -
- crossplane-dev on google groups

- every other Tuesday 9am
Pacific

https://github.com/crossplaneio/crossplane/
https://crossplane.io/
https://slack.crossplane.io/
https://twitter.com/crossplane_io
https://groups.google.com/forum/
https://github.com/crossplaneio/crossplane/

