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• It’s easy to manage the 
services we build and 
deploy in a declarative way
•Active state controllers for 
reconciliation
•Containers for our services
•Proven scalability
• It is extensible!  

We        Kubernetes



• Leverage managed Kubernetes 
for your apps
• But use cloud managed services 

in production
• Database replication and backups, DR, 

elasticity, etc.

• Use advanced cloud provider 
functionality like search, AI/ML, 
that is a pain to manage in cluster

Modern cloud native applications



What’s wrong with this picture?

• You have dependencies on databases, buckets, 
pub/sub, search, monitoring, etc.

• But do you really want all these running in your own 
cluster in production? 
• Do you want to be paged at midnight? I didn’t 

think so!
• Also, your IT DevOps are using a completely different 

set of tools to provision & orchestrate cloud services
• It’s a dumpster fire of tools!

Modern applications are composed of more than just the services 
you write and own…
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• Based on Kubernetes engine
• That brings cloud provider 
services and infrastructure into 
Kubernetes
•One API to manage your 
infrastructure
• Provide portability for 
heterogeneous workloads  
beyond containers

Can we solve this in an 
elegant way?



Cloud Native Evolution
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Building on the Kubernetes Engine

● Declarative API
● kubectl native integration as well as other tools, libraries, 

and UI
● Rich ecosystem and community growing around 

Kubernetes
● Lets apply the lessons learned from container 

orchestration to multicloud workloads and resources



Resource lifecycle management

● Custom Resources (CRDs): model cloud provider services 
and infrastructure as well as independent cloud offerings

● Custom controllers: provision, configure, scale, monitor, 
upgrade, failover, backup, and more

● Active reconciliation: responds to external changes that 
deviate from the desired configuration



● Powerful “volume” abstraction in Kubernetes - portability 
of stateful applications

● What about other resources? databases, buckets, clusters, 
caches, message queues, data pipelines, AI/ML, etc.

● Let’s abstract those too!
● Write once, run anywhere

Portable resource abstractions



Open source multicloud control plane



● Developer composes their app and resources in 
a general way  
○ Not tightly coupled at app dev time

● Administrator defines environment specifics and 
policies

● Modeled as resource claims and resource 
classes
○ similar to PVC and StorageClass

● Dynamic (on-demand) provisioning of resources

Separation of concerns

Deconstructed image courtesy of Todd McLellan

http://shop.toddmclellan.com/


GitOps for cloud native apps

• App owner YAML 
• Resource Claims
• Workloads

• Administrator YAML 
• Resource Classes
• Providers
• Concrete resources

• Dev and Ops converge 
• A single app definition for 

the stack

Dev Ops



Resource Claim

• App owner YAML 
• Resource Claims
• Workloads

• App specifies a cloud 
postgreSQL
dependency



Resource Class

• Administrator YAML 
• Resource Classes
• Providers
• Concrete resources

• Administrator defines 
where PostgreSQL is 
dynamically provisioned
• e.g. AWS RDS in 

example 



● Real world (complex) application
○ Currently a Helm chart
○ 4,800 lines of YAML, 14 Deployments, 3 Jobs, 9 Services, 16 

ConfigMaps, etc.
● PostgreSQL, Redis, Object storage
● How can we make this better?

○ CRD - simple config experience
○ Custom controller to generate artifacts
○ Fully automated and portable multi-cloud deployment

GitLab on Crossplane



GitLab on Crossplane
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Demo



How to get involved?
• Contribute to Crossplane

• https://github.com/crossplaneio/crossplane/
• https://crossplane.io/

• Slack - https://slack.crossplane.io/
• Twitter - @crossplane_io
• Forums - crossplane-dev on google groups
• Community Meetings - every other Tuesday 9am 

Pacific

https://github.com/crossplaneio/crossplane/
https://crossplane.io/
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