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Kubernetes

* It's easy to manage the

services we build and
deploy in a declarative way

e Active state controllers for

reconciliation

e Containers for our services
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 Leverage managed Kubernetes

for your apps

 But use cloud managed services
in production
 Database replication and backups, DR,
elasticity, etc.
* Use advanced cloud provider
functionality like search, Al/ML,
that is a pain to manage in cluster
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Modern applications are composed of more than just the services
you write and own...

* You have dependencies on databases, buckets,
pub/sub, search, monitoring, etc.

« But do you really want all these running in your own
cluster in production?

* Do you want to be paged at midnight? | didn't
think so!

* Also, your IT DevOps are using a completely different
set of tools to provision & orchestrate cloud services

* It's a dumpster fire of tools!
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Can we solve this in an
elegant way?

 Based on Kubernetes engine

* That brings cloud provider
services and infrastructure into
Kubernetes

* One AP| to manage your
infrastructure

* Provide portability for
neterogeneous workloads
peyond containers




Cloud Native Evolution

Composability

Portable

O Resources

<= The natural
next step

Portability .
Cloud Functions
Native Modularity (FEN)
Attributes
Elasticity
@ Lambda, GCF
Resiliency
@ Kubernetes: GKE, EKS, ACS
Operability @ Openstack, AWS EC2

VMs Containers

Workloads

Level of Abstraction
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Declarative API

kubectl native integration as well as other tools, libraries,

and Ul

Kubernetes

_ets apply the lessons
orchestration to multic

Rich ecosystem and community growing around

earned from container

oud workloads and resources



o Custom Resources (CRDs): model cloud provider services

and infrastructure as well as independent cloud ofterings
o Custom controllers: provision, contigure, scale, monitor,
upgrade, failover, backup, and more
o Active reconciliation: responds to external changes that

deviate from the desired configuration



Powertul "volume"” abstraction in Kubernetes - portability

of stateful applications
What about other resources? databases, buckets, clusters,

caches, message queues, data pipelines, Al/ML, etc.
Let's abstract those too!
Write once, run anywhere
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Open source multicloud control plane

R
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e Developer composes their app and resources in
a general way

o Not tightly coupled at app dev time
e Administrator defines environment specitics and

policies

e Modeled as resource claims and resource

classes

o similar to PVC and StorageClass

e Dynamic (on-demand) provisioning of resources

Deconstructed image courtesy of Todd McLellan



http://shop.toddmclellan.com/

GitOps for cloud native apps

* App owner YAML
e Resource Claims
 Workloads

 Administrator YAML

e Resource Classes
e Providers
« Concrete resources

* Dev and Ops converge

* A single app definition for
the stack

Dev

@

Ops

App.yaml

—

Stacks.yaml

©

Git Repo
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Cl Pipeline

v
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ication
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° A owner YAML F Example PostgreSQL resource claim using the cloud-postgresql resource class
F)F) apiVersion: storage.crossplane.io/vlalphal
* Resource C|aims kind: PostgreSQLInstance
metadata:
* Workloads

name: cloud-postgresql-claim
namespace: demo

* App specifies a cloud spec:
pOStgreSQL classReference:
name: cloud-postgresql
dependency

namespace: crossplane-system
engineVersion: "9.6"



Resource Class

 Administrator YAML

e Resource Classes
e Providers
« Concrete resources

* Administrator defines
where PostgreSQL is
dynamically provisioned

* e.g. AWS RDS in
example
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# ResourceClass that defines the blueprint for how a "standard" RDS instance
# should be dynamically provisioned
apiVersion: core.crossplane.io/vlalphal
kind: ResourceClass
metadata:
name: cloud-postgresql
namespace: crossplane-system
parameters:
class: db.t2.small
masterUsername: masteruser
securityGroups: '"sg-ablcdefg,sg-05adsfkajlksdjak"
size: "20"
provisioner: rdsinstance.database.aws.crossplane.io/vlalphal
providerRef:
name: aws—-provider
reclaimPolicy: Delete



GitLab on Crossplane

e Real world (complex) application
o Currently a Helm chart
o 4,800 lines of YAML, 14 Deployments, 3 Jobs, 9 Services, 16
ContigMaps, etc.
e PostgreSQL, Redis, Object storage
e How can we make this better?
o CRD - simple config experience
o Custom controller to generate artifacts

o Fully automated and portable multi-cloud deployment
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® Crossplane

How to get involved?

® Contribute to Crossplane

* Slack -
* Twitter -
- crossplane-dev on google groups

- every other Tuesday 9am
Pacific



https://github.com/crossplaneio/crossplane/
https://crossplane.io/
https://slack.crossplane.io/
https://twitter.com/crossplane_io
https://groups.google.com/forum/
https://github.com/crossplaneio/crossplane/

