Using Open Source Software to Build an Industrial-grade Embedded Linux Platform from Scratch

SZ Lin (林上智)

Embedded Linux Development Center, Software R&D Engineer 06/25, 2019

About Me

SZ LIN (林上智)

- Software Engineer at Moxa
- Cybersecurity Fundamentals Specialist
 - ISA/ IEC 62443
- Debian Developer
- Blog https://szlin.me

Industrial Embedded Linux Platforms

Application

Smart Rail

Smart Grid

Smart

Smart Oil Field Transportation

Smart Marine **Factory**

Edge Connectivity

Serial Video **Connectivity Connectivity Connectivity**

Industrial Computing

Embedded Computers

Network Infrastructure

Industrial Ethernet

Device

Before Using Open Source Software

Something You Should Know

Copyright

Copyright is a legal right, that grants the creator of an original work exclusive rights to determine whether, and under what conditions, this original work may be used by others

src: https://en.wikipedia.org/wiki/Copyright

Patent

A patent gives its owner the right to exclude others from making, using, selling, and importing an invention for a limited period of time, usually twenty years.

src: https://en.wikipedia.org/wiki/Patent

Identify key recommended processes for effective open source management [1].

Patent

open**invention***network**

It is a shared defensive patent pool with the mission to protect Linux [2].

Processes, Tooling and Support

OpenChain

Trust between entities in the supply chain

The OpenChain Project builds trust in open source by making open source license compliance simpler and more consistent

SPDX [3]

Trust for software packages

Software Package Data Exchange (SPDX) is a file format used to document information on the software licenses under which a given piece of computer software is distributed.

FOSSology [4]

Free scanning technology

FOSSology is a open source license compliance software system and toolkit

Industrial/ Harsh Environments

Including smart rail, smart grid, intelligent transportation, factory automation, oil & gas, marine, and more

Target Application

Longevity + Stability + Security

Performance

Real-time

Resource Limited

Safety

Target Application

Lifecycle of Industrial-grade Embedded Linux Platform

Development Phase

Design and development according to application

Choose Proper Bootloader

Category	License	Supported Platforms	Supported UEFI	Maintainer
Das U-Boot	GPL-2+	68k, ARM, Blackfin, MicroBlaze, MIPS, Nios, SuperH, PPC, RISC-V, x86 (on top of Coreboot)	Y	DENX Software Engineering
Coreboot [6]	GPL-2	IA-32, x86-64, ARMv7, ARMv8, MIPS, RISC-V, POWER8	Y	coreboot.org
GRUB	GPL-3	IA-32, x86-64, IA-64, ARM, PowerPC, MIPS and SPARC	Y	GNU Project
r EFInd [9]	GNU GPLv3, Modified BSD License (original program), additional components released under various licenses	x86, x86-64, or ARM64	Y	Roderick W. Smith

Kernel Space

Choose Proper Kernel

Based on the application requirement

Linux Kernel Comparison Table

Category	Latest version	Target Application	Maintainer
Linux kernel	5.2	 Performance Resource Limited [12] [13] 	Kernel.org
Preempt RT kernel	5.0	Real-timeFunctional safetyResource Limited	Real Time Linux collaborative project

*Real-time application [14][15]

SoC Board Support Package Kernel

- Kernel version depends on SoC vendors
 - Well made but not well maintained
- Contain lots of in-house patches
 - Errata patches
 - Specific feature patches
 - ...
- Different SoC might use different versions of kernel
- The lifetime is unsure

LTS: Long Term Stable Kernel [16]

Longterm release kernels

Version	Maintainer	Released	Projected EOL
4.19	Greg Kroah-Hartman	2018-10-22	Dec, 2020
4.14	Greg Kroah-Hartman	2017-11-12	Jan, 2020
4.9	Greg Kroah-Hartman	2016-12-11	Jan, 2023
4.4	Greg Kroah-Hartman	2016-01-10	Feb, 2022
3.16	Ben Hutchings	2014-08-03	Apr, 2020

Extend software uptime for stable kernel

Only accept bug fixes and security fixes

LTSI: Long Term Support Initiative [17]

- Linux Foundation collaborative project
 - Based on LTS
 - Add another chance to include further patches on top of LTS
 - Auto Test framework
 - Same lifetime with LTS (yearly release and 2 years life time)

CIP (Civil Infrastructure Platform) [19]

CIVIL INFRASTRUCTURE PLATFORM

Establishing an open source base layer of industrial grade software to enable the use and implementation of software building blocks for civil infrastructure

- Linux Foundation collaborative project
 - Support kernel and core package
 - Auto Test framework
 - Maintenance period
 - 10 years and more (10-20 years)

img: https://wiki.linuxfoundation.org/civilinfrastructureplatform/cipconferences

Linux Kernel Source Comparison Table

Version	Maintenance Period (years)	Features	Latest Version	Supported Realtime kernel	Maintainer
SoC BSP kernel	?	Bug fixes	?	N	SoC vendor kernel team
LTS kernel	2~?	Bug fixesSecurity fixes	4.19	N	Kernel.org
LTSI kernel	2~?	Bug fixesSecurity fixesSpecific featuresNew features	4.14	N	LTSI
CIP kernel	10 +	Bug fixesSecurity fixesSpecific featuresNew features	4.19	Υ	CIP

Longevity + Stability + Security

Mutually Exclusive?

Performance

Real-time

Resource Limited

Safety

Multiple Kernel In Single Platform

To fulfill multiple user scenarios

FIT (Flattened Image Tree)

(A case of ARM-based architecture)

- Tree data structure
- Handle multiple types of image
 - kernel : kernel image
 - fdt : dtb file
 - ramdisk : root file system
- Image hashing
 - md5
 - sha1
- Image signing
- Each node in configurations has their image configuration in booting stage


```
/dts-v1/;
       description = "Image file for the LS1043A Linux Kernel";
       #address-cells = <1>;
       images {
                kernel@1 {
                        description = "ARM64 Linux kernel";
                        data = /incbin/("./arch/arm64/boot/Image.gz");
                        type = "kernel";
                        arch = "arm64";
                        os = "linux";
                        compression = "gzip";
                        load = <0x800800000>;
                        entry = <0x80080000>;
                };
fdt@1 {
                        description = "Flattened Device Tree blob";
                        data = /incbin/("./arch/arm64/boot/dts/freescale/fsl-ls1043a-rdb.dtb");
                        type = "flat_dt";
                        arch = "arm64";
                        compression = "none";
                        load = <0 \times 900000000>;
                };
       };
       configurations {
                default = "config@1";
                config@1 {
                        description = "Boot Linux kernel";
                        kernel = "kernel@1";
                        fdt = "fdt@1";
                };
       };
```

More info.:

http://git.denx.de/?p=u-boot.git;a=blob_plain;f=doc/ulmage.FIT/source_file_format.txt;hb=HEAD

User Space

ELISA: Safety-Critical Systems [20]

Linux Foundation collaborative project

- Build and certify Linux-based safety-critical applications
- Define and maintain a common set of tools and processes
 - SIL2LinuxMP [21] project and the Linux Foundation's Real-Time Linux project
- IEC 61508

Choose Proper C Library and Toolchain

C Library and Toolchain Comparison Table

Category	License	Features	Target Application	Maintainer User
glibc [25]	LGPL 2.1	 Stable ABI Backward compatibility Fully symbol versioning Stack smashing protection/ heap corruption detection Profiling 	PerformanceSecurity	GNU
uClibc-ng	LGPL 2.1	No-MMU architecture supportTiny size	Resource Limited	uclibc-ng.org
Musl [28]	MIT	 Stable ABI Backward compatibility Stack smashing protection/ heap corruption detection 	Resource LimitedSecurity	musl-libc.org

^{*} Be aware of year 2038 problem [29]

Init System

Init System Comparison Table

Category	License	C Library	User	Note
busybox	GPL 2.0	uClinux-ng Glibc musl	ProteanOS PiBox	Resource- limited application
sysvinit	GPL 2.0+	uClinux-ng glibc musl	Devuan	
systemd	LGPL 2.1+	glibc	Arch, CentOS, CoreOS, Debian, Fedora, Mint, OpenSUSE, Redhat, Ubuntu	Linux only
openrc	2-clause BSD	musl glibc	Gentoo Alpine Linux	
upstart	GPL 2.0	glibc	Chromium OS	Linux only

Choose proper RFS (Root filesystem)

Stable root filesystem

Root filesystem Comparison Table

Category	Maintenance Period (years)	Number of packages	C Library	Security Tracker	CI
Busybox	?	300 ~ 400 applets	uClibcglibc	?	?
Yocto	Latest release the previous two releases	?	glibcmusl	Y	Y
Buildroot	1	2000+ [42]	glibcmusluClibc-ng	Y	Y
Debian	3 + 2 (i386, amd64, armel, armhf and arm64)	51000+	glibcmusl	Υ	Y

System Development Tools

System Development Tools Comparison Table

Root filesystem	System Development Tools	Toolchain	System Development Tools License
Busybox	Yocto	OE-Core	MIT
Yocto	Yocto	OE-Core	MIT
Buildroot	Buildroot	Buildroot	GPL 2.0+
	ISAR	Debian toolchain	Metadata: MIT Others: GPL 2.0
Debian	ELBE	Debian toolchain	GPL 3.0+
Debian	Yocto Deby (meta- debian)	OE-Core	MIT
	Live-build	Debian toolchain	GPL 3.0+

Why We Choose Debian [49]

Stability

unstable → testing → stable

Scalability

Server, Desktop, Laptop, Embedded devices

Good system security [50]

Everything is open
Usually, fixed packages are uploaded
within a few days

Long term support

5 more years by Debian-LTS project (i386, amd64, armel, armhf and arm64)

Multiple architectures

alpha, amd64, armel, armhf, aarch64, hppa, i386, ia64, mips, mipsel, powerpc, s390, and spar

Incredible amounts of software

Debian comes with over 51000 different pieces of software with free

More info: Building, Deploying and Testing an Industrial Linux Platform
Open Source Summit Japan 2017 [51]

CI/ CD Automatic Release Pipeline

CI/ CD Automatic Release Pipeline

DOWNLOAD 6.3.1

Test Cases Management - Jenkins

```
Shell
# Shell
    #5 #!Shell
    #0
    ex #s #!/bin/bash -x
        ex #static code analysis
 ma ma cr #cpd
           export HEAPSIZE=1024m
    ma ma cpd_run.sh cpd --minimum-tokens 100 --files drivers/cpufreq/ --language cpp --format xml > cpd.xml
    rm ma make uc8100me_defconfig
ta ma make -j$[$(nproc)*2]
        rn make uImage
        ta make INSTALL MOD_STRIP=1 modules_install INSTALL_MOD_PATH=./kodir
rm kodir/lib/modules/*/{source,build}
           tar -C kodir/lib/modules/ -cvf kodir.tar ./
                                                                                                                        Static
                                                                                                Static
                                                                                                                                                                       Static
                                                                                              analysis
                                                                                                                      analysis
                                                                                                                                                                    analysis
                                                                                                    #1
                                                                                                                           #2
                                                                                                                                                                          #n
```


Image: https://c1.staticflickr.com/5/4030/4438139050_04604b4908.jpg

Distributed Compiler

Software

- lcecream/ lceCC was created by SUSE based on distcc [55][56]
 - Improve performance of compile jobs in parallel
 - Add dynamic scheduler of the compilation jobs
 - Support multiple platform
 - Support cross compiling

Hardware - for each node

- SSD
- Large capacity memory
- Gigabit LAN

CI/ CD Automatic Release Pipeline

Continuous Delivery – LAVA [57][58]

LAVA

2019.05.post1+stretch

Index Contents

Page ▼

Contents »

Search

Introduction to LAVA

Navigation

Use the navigation bar at the top of each page to quickly navigate between sections of the documentation; Index, Contents, Page and Next.

Index

The Help Index is often the quickest way to find specific sections of the documentation.

Contents

If you are new to LAVA, the Help Contents describes several useful starting points, depending on how you expect to use LAVA.

Page indices

Each page also has a Page menu for topics within the page as well as forward and back navigation to lead readers through in a logical manner.

About LAVA V2

LAVA V2 is the second major version of LAVA. The major user-visible features are:

- · The Pipeline model for the dispatcher
- YAML job submissions
- Results
- Queries
- Charts

Data export APIs

The architecture has been significantly improved since V1, bringing major changes in terms of how a distributed LAVA instance is installed, configured and used for running test jobs.

1. Send job file via XML-RPC

Dynamic Program Analysis

- gcov [59]
- valgrind [60]
- profiling tools [61]
- ..

- LTP [62]
- Security testing [63]
- Kselftest [67]
- ..

2. Dispatch job via ZMQ

Worker

Worker

Worker

6. Trigger test framework

(Test framework)

- 4. Boot up via Ethernet remote I/O
- 5. Deployment via TFTP
- 7. Send test cases
- 8. Start testing
- 9. Send back testing result

DUT Clusters

Fuego [68][69]

- Test framework for testing embedded Linux
 - Official automated test framework for the LTSI project.
 - BSD 3-Clause license in default
 - Over 100 pre-packaged tests
 - Ability for 3rd parties to initiate or schedule tests on our hardware, and the ability to share our test results with others.

Maintenance Phase

Long-term Testing and Regular Update

More info: Building, Deploying and Testing an Industrial Linux Platform
Open Source Summit Japan 2017 [51]

^{*} Test cases are managed by test framework

Endurance test Compatibility test

Longevity

Long-term support at least 10 years life cycle with bug fixes, new features and new hardware components

Robustness

Robustness is the ability of a computer system to cope with errors during execution and cope with erroneous input [71]

Reliability

Reliability is enhanced by features that help to avoid, detect and repair hardware faults [72]

Security

Fuzz testing [64][65][66]

Longevity

Long-term support at least 10 years life cycle with bug fixes, new features and new hardware components

Robustness

Robustness is the ability of a computer system to cope with errors during execution and cope with erroneous input [71]

Reliability

Reliability is enhanced by features that help to avoid, detect and repair hardware faults [72]

Security

Power failure test Reboot test Regression test

Reliability

Reliability is enhanced by features that help to avoid, detect and repair hardware faults [72]

Security

Daily test for CVE [63]

Security

For Stable Kernel Maintenance

KernelCI

- Automated Linux Kernel Testing [73][74]
 - Detect, bisect, report and fix regressions on upstream
 Kernel trees before release
 - Short tests on many configurations

Reproducible Builds [75]

- Create an independently-verifiable path from source to binary
 - Ensure builds have identical results
 - Act as part of a chain of trust
 - Prove the source code has not been tampered/modified

Open Source Testing Tools

Continuous Internation	• .lenkins [78]		
Continuous Integration	Jenkins [78]Jenkins X [79]		
Continuous Delivery/ Deployment	• LAVA 2 [57]		
Distributed compiler service	• icecc [55]		
-	GOMA [80][81]		
	• distcc [82]		
Test Case Management	Jenkins		
	• LAVA 2		
	Fuego [68][69]		
Version Control	Git with gitlab [83]		
Static Program Analysis	Coding style		
	• OWASP [52]		
	• Infer [53]		
	Sonarqube [54]		
Dynamic Program Analysis	Gcov [59]		
	Valgrind [60]		
	Profiling tools [61]		
Security Testing	OpenVAS [63]		
	• Vuls [84]		
Fuzzing Testing	Syzkaller [64]		
	• Trinity [65]		
	OSS-fuzz [66]		

CI/ CD/ LT are concepts of software engineering instead of tools or procedures

Why We Need Software Update?

Over 10+ years

The Components Might Be Updated

Components	Size	Update frequency	Risk
Peripheral devices firmware	< 10 MB	Rarely	Mid
Bootloader (including SPL)	< 1 MB	Rarely	High
Device tree	<100 kB	Rarely	High
Linux kernel	< 10 MB	Regularly	High
Root file system	Variant	Regularly	High
System configuration	< 1 MB	Rarely	Low
Application	Variant	Often	Low

Characteristics of Industrial Embedded Linux Platform

Harsh environment

Unreliable network and power supply

Middle of nowhere

Human-less warehouse or site

Bandwidth limited

Wireless focus

Multiple version supported

Rollback version

Multiple devices

Remote management

Longevity

Long-term support at least 10 years life cycle

The Media for Software Update

Wire cable

OTA

Portable storage

On-site

Software Update Requirements

Basic Features	
Fail-safe	
Roll-back	
Size reduction	
Signatures	
Multiple storage type support (e.g., NOR/NAND flash, eMMC)	
Build system integration	
Remote access (e.g., OTA)	
Additional Features	
Online and offline updates	
Encryption	
Delta-updates	
Successful update detection	
Proactive updating	

Update Approaches

Components	Size	Complexity	Time Cost
Image/ block based	Large	Low	Very High
File based	Variant	Low	Variant
Package based (e.g., deb, rpm)	Variant	Low	Variant
Delta based	Low	Very High	Low

Comparison - Features

Category	Fail-Safe	Roll- Back	Delta- Updates	Signatures	Multiple Storage Type Support	Build System Integration
SWUpdate	Y	Y	librsync	Y	•NOR NAND flashes •UBI volumes •SD / eMMC	Yocto/ Buildroot
RAUC	Y	Υ	casync	Y	•NOR NAND flashes •UBI volumes •SD / eMMC	Yocto/ Buildroot
OSTree	N	Υ	archive- z2	Y	?	Yocto

Comparison - Others

Method	Asymmetric/ Symmetric Image Updates	Туре	Language	License
SWUpdate	Both	Image-based File-based	C99	GPLv2 With openssl exception
RAUC	Both	Image-based File-based	С	LGPLv2.1
OSTree	Asymmetric	File-based	C/C++	MPL 2.0 /LGPLv2+

Conclusion

Preparedness Planning

Community Collaboration

Longevity, stability and security

Different approach for multiple target applications

Thank You

© Moxa Inc. All rights reserved.

- [1] https://www.openchainproject.org
- [2] https://www.openinventionnetwork.com/
- [3] https://spdx.org/
- [4] https://www.fossology.org/
- [5] https://en.wikipedia.org/wiki/Das_U-Boot
- [6] https://en.wikipedia.org/wiki/Coreboot
- [7] https://en.wikipedia.org/wiki/Booting#Modern_boot_loaders
- [8] http://www.rodsbooks.com/refind/
- [9] https://en.wikipedia.org/wiki/REFInd
- [10] https://www.kernel.org
- [11] https://wiki.linuxfoundation.org/realtime/start
- [12] https://tiny.wiki.kernel.org/start
- [13] https://bootlin.com/pub/conferences/2017/jdll/opdenacker-embedded-linux-in-less-than-4mb-of-ram/opdenacker-embedded-linux-in-less-than-4mb-of-ram.pdf
- [14] https://xenomai.org/
- [15] https://www.rtai.org/

- [16] https://www.kernel.org/category/releases.html
- [17] https://ltsi.linuxfoundation.org/
- [18] https://events.linuxfoundation.org/wp-content/uploads/2017/11/Using-Linux-for-Long-Term-Community-Status-and-the-Way-We-Go-OSS-Tsugikazu-Shibata.pdf
- [19] https://www.cip-project.org/
- [20] https://elisa.tech/
- [21] http://www.osadl.org/SIL2LinuxMP.sil2-linux-project.0.html
- [22] https://wiki.linuxfoundation.org/gsoc/2019-gsoc-safety-critical-Linux
- [23] https://lists.elisa.tech/login?r=%2Ftopics
- [24] https://events.static.linuxfound.org/sites/events/files/slides/libc-talk.pdf
- [25] https://www.gnu.org/software/libc/
- [26] https://uclibc-ng.org/
- [27] http://events.linuxfoundation.org/sites/events/files/slides/uclibc-still-makes-sense-brodkin-elce2017.pdf
- [28] https://www.musl-libc.org/
- [29] https://en.wikipedia.org/wiki/Year_2038_problem

- [30] https://en.wikipedia.org/wiki/Linux_startup_process
- [31] http://upstart.ubuntu.com/faq.html
- [32] https://en.wikipedia.org/wiki/Systemd
- [33] https://sysdfree.wordpress.com/2019/03/09/135/
- [34] https://wiki.gentoo.org/wiki/Comparison_of_init_systems
- [35] https://elinux.org/images/6/69/Demystifying_Systemd.pdf
- [36] http://proteanos.com/
- [37] https://www.piboxproject.com/
- [38] https://lists.debian.org/debian-devel/2016/02/msg00122.html
- [39] https://busybox.net/FAQ.html#libc
- [40] https://wiki.yoctoproject.org/wiki/Stable_branch_maintenance
- [41] https://www.debian.org/social_contract#guidelines
- [42] https://bootlin.com/pub/conferences/2018/elc/petazzoni-buildroot-whats-new/petazzoni-buildroot-whats-new.pdf

- [43] https://events.static.linuxfound.org/sites/events/files/slides/libc-talk.pdf
- [44]
- http://events17.linuxfoundation.org/sites/events/files/slides/ELC%202016%20-%20Designing%20a%20distro%20from%20scratch%20using%20OpenEmbedd ed.pdf
- [45] https://github.com/meta-debian/meta-debian
- [46] https://events.linuxfoundation.org/wp-content/uploads/2017/12/ELCE2018_Debian-Yocto-State-of-the-
- Art r6 Kazuhiro-Hayashi.pdf
- [47] https://events.linuxfoundation.org/wp-content/uploads/2017/12/Buildroot-
- vs-Yocto-Differences-for-Your-Daily-Job-Luca-Ceresoli-AIM-Sportline.pdf
- [48] https://events.static.linuxfound.org/sites/events/files/slides/bellonipetazzoni-buildroot-oe 0.pdf
- [49] https://www.debian.org/intro/why_debian.en.html
- [50] https://www.debian.org/security/index.en.html
- [51] http://events.linuxfoundation.org/sites/events/files/slides/Build ing%2C%20Deploying%20and%20Testing%20an%20Industrial%20Linux% 20Platform.pdf

[52] https://wiki.jenkins-ci.org/display/JENKINS/Plugins [53] http://fbinfer.com/ [54] https://www.sonarqube.org/ [55] https://github.com/icecc [56] https://www.slideshare.net/szlin/distributed-compiler-icecc [57] https://validation.linaro.org/static/docs/v2/# [58] http://elinux.org/images/3/35/LAVA Project Update.pdf [59] https://gcc.gnu.org/onlinedocs/gcc/Gcov.html [60] http://valgrind.org/ [61] https://perf.wiki.kernel.org/index.php/Main Page [62] http://linux-test-project.github.io/ [63] http://www.openvas.org/ [64] https://github.com/google/syzkaller [65] http://codemonkey.org.uk/projects/trinity/ [66] https://github.com/google/oss-fuzz [67] https://kselftest.wiki.kernel.org

- [68] https://elinux.org/Fuego
- [69] http://fuegotest.org/
- [70] https://elinux.org/Automated_Testing_Summit_2019
- [71] https://en.wikipedia.org/wiki/Robustness_(computer_science)
- [72] https://en.wikipedia.org/wiki/Reliability,_availability_and_serviceability
- [73] https://kernelci.org/
- [74]
 - https://fosdem.org/2019/schedule/event/kernelci_a_new_dawn/attachment s/slides/3300/export/events/attachments/kernelci_a_new_dawn/slides/3300/gtucker_kernelci_fosdem_2019_v2_3_1024x768.pdf
- [75] https://reproducible-builds.org/
- [76] http://layer-acht.org/slides/2019-06-08-MiniDebConf-Hamburg--aiming-for-bullseye/#/7
- [77] https://wiki.debian.org/ReproducibleBuilds
- [78] https://jenkins.io
- [79] https://jenkins.io/projects/jenkins-x/
- [80] https://chromium.googlesource.com/infra/goma/server/
- [81] https://chromium.googlesource.com/infra/goma/client

[82] https://github.com/distcc/distcc [83] https://about.gitlab.com/ [84] https://vuls.io/ [85] https://mkrak.org/wp-content/uploads/2018/04/FOSS-NORTH_2018_Software_Updates.pdf [86] https://events.linuxfoundation.org/wpcontent/uploads/2017/12/Strategies-for-Developing-and-Deploying-your-Embedded-Applications-and-Images-Mirza-Krak-Mender.io_.pdf **[87]** http://events17.linuxfoundation.org/sites/events/files/slides/ELC2017 SWU pdate.pdf [88] https://events.linuxfoundation.org/wp-content/uploads/2017/12/ELCE-2018-Update-Tools-BoF_Jan-Lubbe.pdf [89] https://events.linuxfoundation.org/wp-content/uploads/2017/12/ELCE-2018-Update-Tools-BoF_Jan-Lubbe.pdf [90] https://elinux.org/images/f/f5/Embedded Systems Software Update for I oT.pdf [91] https://rauc.readthedocs.io/en/latest/

