
Using Ambassador to Build
Cloud-Native Applications

Steve Flanders

CloudNativeCon China, Shanghai 2019

About Me

Steve Flanders

Head of Product and Experience at Omnition

@smflanders | https://sflanders.net

Agenda

● Background
○ The move from monolith to microservice-based architecture
○ An introduction to API gateways
○ Kubernetes and what it provides

● Ambassador
○ What is it?
○ How does it work?
○ What does it provide?

● Cloud-Native Applications
○ API gateway use-cases
○ Real world examples
○ Configuration examples
○ Lessons learned

Background

Monolith to microservices

API
Gateway

Kubernetes and what it provides

From https://kubernetes.io/: Kubernetes (K8s) is an open-source system for
automating deployment, scaling, and management of containerized applications.

apiVersion: v1
kind: Service
metadata:
 name: ambassador
spec:
 type: LoadBalancer
 externalTrafficPolicy: Local
 ports:
 - port: 80
 targetPort: 8080
 selector:
 service: ambassador

https://kubernetes.io/

Ambassador

What is it?

Put another way: Envoy is a “data plane” and Ambassador is a “control plane”

Ambassador
● An open source, Kubernetes-native microservices

API gateway built on the Envoy Proxy.

Envoy
● An open source edge and service proxy,

designed for cloud-native applications.

How does it work?

1. Service owner defines configuration
in Kubernetes manifests.

2. Kubernetes API notifies Ambassador
of manifest changes.

3. Ambassador parses the change and
transforms the configuration to a
semantic intermediate
representation. Envoy configuration
is generated from this IR.

4. The new configuration is passed to
Envoy via the gRPC-based Aggregated
Discovery Service (ADS) API.

5. Traffic flows through the reconfigured
Envoy, without dropping any
connections.

What does it provide?

Support for:

● Self-Service via Kubernetes Annotations

● Kubernetes-Native Architecture

● Istio Integration

● Flexible Canary Deployments

Features:

● gRPC and HTTP/2 Support

● Authentication

● Rate Limiting

● Integrated Diagnostics

How is it different?

Alternatives fall in three basic categories:

1. Hosted API gateways
(e.g. Amazon API gateway)

2. Traditional API gateways
(e.g. Kong)

3. L7 proxies
(e.g. Traefik, NGINX, HAProxy, or Envoy, or Ingress
controllers built on these proxies)

Ambassador differences:

● No vendor lock-in (e.g. hosted gateways)

● No dependency on external database
(e.g. Kong)

● Self service and Kubernetes native

● Leverages Envoy

Cloud-Native Applications

Use-case 1: Edge (North/South) Routing

● Ability to control/route ingress traffic
● Offload requirements such as

○ Authentication (e.g. require all
ingress traffic to be authenticated)

○ Encryption (e.g. TLS termination and
pass-through)

○ Retries and timeouts

Real World Example: Monolith to microservices

MonolithAmbass
ador

Real World Example: Monolith to microservices

Monolith
Ambass

ador

Real World Example: Monolith to microservices

Ambass
ador

Real World Example: SaaS Service

Ingestion

Query

Auth

Ingest
Path

Query
Path

Data

Ambass
ador

SaaS Service

Understanding TLS

Understanding TLS and SNI

Use-case 2: Internal (North/South) Routing

● Ability to control/route multi-tenant
traffic

● Offload requirements such as
○ Mapping (e.g. based on headers)
○ Retries and timeouts

Real World Example: SaaS Service

Ingestion

Query

Auth Ingest
Path

Query
Path Data

Ingest
Path

Query
Path Data

Ambass
ador

SaaS Service

Real World Example: SaaS Service

Ingestion

Query

Auth Ingest
Path

Query
Path Data

Ingest
Path

Query
Path Data

Ambass
ador

SaaS Service

Use-case 3: Internal (East/West) Routing

● Ability to control/route any traffic
● Offload requirements such as

○ Service discovery
○ Load balancing
○ Access control

Real World Example: SaaS Service

Billing
ServiceQuery

Service
Auth

Service

Ambass
ador

Ingest
Service

Analytics
Service

Ambass
ador

K8s node 1 K8s node 2

Real World Example: Service Mesh

Billing
ServiceQuery

Service
Auth

Service

Istio

Envoy

Ambass
ador

SaaS service

Envoy

Envoy

Use-case 4: Traffic Shadowing

● Ability to test code/releases
● Leverage real traffic/load
● Minimize duplicated resources

Use-case 5: Software Development Testing with Telepresence (paid)

● Ability to test in production
● Ability to leverage production without

impacting production

Configuration

Options by version

< 0.50.0

● Configmaps
● Annotations

>= 0.50.0

● Annotations

>= 0.70.0

● Annotations
● CRDs

Encryption

apiVersion: v1

kind: Service

metadata:

 annotations:

 getambassador.io/config: |

 apiVersion: ambassador/v0

 kind: Module

 name: tls

 ambassador_id: myID

 config:

 server:

 enabled: True

...

apiVersion: getambassador.io/v1

kind: Module

metadata:

 name: tls

 namespace: default

spec:

 ambassador_id: myID

 config:

 server:

 enabled: True

...

An
no

ta
tio

ns
 (0

.7
0.

0
an

d
ol

de
r)

CR
Ds

 (0
.7

0.
0

an
d

N
EW

ER
)

Authentication

apiVersion: v1

kind: Service

metadata:

 annotations:

 getambassador.io/config: |

 apiVersion: ambassador/v0

 ambassador_id: myID

 kind: AuthService

 name: authentication

 auth_service: "auth:3000"

 path_prefix: "/auth/api/check"

 apiVersion: ambassador/v0

 kind: Mapping

 ambassador_id: myID

 name: auth

 prefix: /auth/

 rewrite: /auth/

 service: auth:3000

...

apiVersion: getambassador.io/v1

kind: AuthService

metadata:

 name: authentication

 namespace: default

spec:

 ambassador_id: myID

 auth_service: "auth:3000"

 path_prefix: "/auth/api/check"

apiVersion: getambassador.io/v1

kind: Mapping

metadata:

 name: auth-mapping

 namespace: default

spec:

 ambassador_id: myID

 prefix: /auth/

 rewrite: /auth/

 service: auth:3000

An
no

ta
tio

ns
 (0

.7
0.

0
an

d
ol

de
r)

CR
Ds

 (0
.7

0.
0

an
d

N
EW

ER
)

Mapping

apiVersion: v1

kind: Service

metadata:

 annotations:

 getambassador.io/config: |

 apiVersion: ambassador/v0

 kind: Mapping

 name: omnition-mapping

 ambassador_id: myID

 prefix: /

 host: omnition.io

 service: web.default.svc.cluster.local

...

apiVersion: getambassador.io/v1

kind: Mapping

metadata:

 name: omnition-mapping

 namespace: default

spec:

 ambassador_id: myID

 prefix: /

 host: omnition.io

 service: web.default.svc.cluster.local

...

An
no

ta
tio

ns
 (0

.7
0.

0
an

d
ol

de
r)

CR
Ds

 (0
.7

0.
0

an
d

N
EW

ER
)

Tracing

apiVersion: v1

kind: Service

metadata:

 annotations:

 getambassador.io/config: |

 apiVersion: ambassador/v0

 kind: TracingService

 name: tracing

 ambassador_id: myID

 service: collector.default:9411

 driver: zipkin

...

apiVersion: getambassador.io/v1

kind: TracingService

metadata:

 name: tracing

 namespace: default

spec:

 ambassador_id: myID

 service: collector.default:9411

 driver: zipkin

...

An
no

ta
tio

ns
 (0

.7
0.

0
an

d
ol

de
r)

CR
Ds

 (0
.7

0.
0

an
d

N
EW

ER
)

Lessons Learned

Dedicate Ambassadors per responsibility

● While this is possible and supported it
is not ideal (e.g. availability,
performance, etc)

● In some circumstances this is not
possible (e.g. exposing 80 and 443
from the same Ambassador instance)

Ingestion

Query

Auth Ingest
Path

Query
Path Data

Ingest
Path

Query
Path Data

Am
bas
sad
or

SaaS Service

Dedicate Ambassadors per responsibility

● Different Ambassador “clusters” can
be created via unique ambassador_id

● Each can be configured and scaled
independently

Ingestion

Query

Auth Ingest
Path

Query
Path Data

Ingest
Path

Query
Path Data

Am
bas
sad
or

SaaS Service

Am
bas
sad
or

Converter
Service

Understand timeouts

AWS ELB settings:

service.beta.kubernetes.io/aws-load-balancer-healthcheck-interval: "5"
service.beta.kubernetes.io/aws-load-balancer-healthcheck-timeout: "3"
service.beta.kubernetes.io/aws-load-balancer-healthcheck-unhealthy-threshold: "2"
service.beta.kubernetes.io/aws-load-balancer-healthcheck-healthy-threshold: "2"

Query

Auth

Ingest
Path

Query
Path Data

Am
bas
sad
or

SaaS Service

Converter
Service

AWS
Cloud
Front

AWS
ELB

3 seconds 3 seconds60 seconds

Ambassador timeout settings:

● Request timeout: timeout_ms (default = 3000ms)
● Idle timeout: idle_timeout_ms (default =300000ms)
● Connect timeout: connect_timeout_ms

Understand service discovery and load balancing

● Typically resolve to k8s service via DNS
○ Use: <service>
○ Use: <service>.<namespace>
○ Not: <service>.<namespace>.svc.cluster.local

● Alternatives
○ K8s endpoint routing
○ Consul routing

Am
bas
sad
or

Converter
Pod

Converter
Pod

● K8s service load balancing
● Alternatives

○ Round robin
○ Ring hash
○ Maglev

Am
bas
sad
or

Converter
Pod

Converter
Pod

Converter
Service

HTTP 503s

Am
bas
sad
or

Converter
Pod

Converter
Pod

Am
bas
sad
or

Converter
Pod

Converter
Pod

Converter
Service

Converter
Pod

Converter
Pod

HTTP 503s

Am
bas
sad
or

Converter
Pod

Am
bas
sad
or

Converter
Pod

Converter
Service

Converter
Pod

Converter
Pod

Am
bas
sad
or

Am
bas
sad
or

Others

● Great start, but work/money required
○ How will you handle authentication?
○ How will you handle circuit breaking?
○ How will you handle per-service retries?

● Store configuration with you service
○ Exception for authentication service
○ Everything through CI/CD

● Edge routing is much harder than internal
○ Encryption: end-to-end or terminated?
○ Authentication: which headers?

● Observability - critical, but immature
○ Tracing differs between releases (Envoy)
○ Metrics are not as granular (Envoy)
○ Diagnostic UI is basic and ugly

Questions?

