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Background
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Kubernetes and what it provides

From https://kubernetes.io/: Kubernetes (K8s) is an open-source system for 
automating deployment, scaling, and management of containerized applications.

---
apiVersion: v1
kind: Service
metadata:
  name: ambassador
spec:
  type: LoadBalancer
  externalTrafficPolicy: Local
  ports:
   - port: 80
     targetPort: 8080
  selector:
    service: ambassador

https://kubernetes.io/


Ambassador



What is it?

Put another way: Envoy is a “data plane” and Ambassador is a “control plane”

Ambassador
● An open source, Kubernetes-native microservices 

API gateway built on the Envoy Proxy.

Envoy
● An open source edge and service proxy, 

designed for cloud-native applications.



How does it work?

1. Service owner defines configuration 
in Kubernetes manifests.

2. Kubernetes API notifies Ambassador 
of manifest changes.

3. Ambassador parses the change and 
transforms the configuration to a 
semantic intermediate 
representation. Envoy configuration 
is generated from this IR.

4. The new configuration is passed to 
Envoy via the gRPC-based Aggregated 
Discovery Service (ADS) API.

5. Traffic flows through the reconfigured 
Envoy, without dropping any 
connections.



What does it provide?

Support for:

● Self-Service via Kubernetes Annotations

● Kubernetes-Native Architecture

● Istio Integration

● Flexible Canary Deployments

Features:

● gRPC and HTTP/2 Support

● Authentication

● Rate Limiting

● Integrated Diagnostics



How is it different?

Alternatives fall in three basic categories:

1. Hosted API gateways
(e.g. Amazon API gateway)

2. Traditional API gateways
(e.g. Kong)

3. L7 proxies
(e.g. Traefik, NGINX, HAProxy, or Envoy, or Ingress 
controllers built on these proxies)

Ambassador differences:

● No vendor lock-in (e.g. hosted gateways)

● No dependency on external database 
(e.g. Kong)

● Self service and Kubernetes native

● Leverages Envoy



Cloud-Native Applications



Use-case 1: Edge (North/South) Routing

● Ability to control/route ingress traffic
● Offload requirements such as 

○ Authentication (e.g. require all 
ingress traffic to be authenticated)

○ Encryption (e.g. TLS termination and 
pass-through)

○ Retries and timeouts



Real World Example: Monolith to microservices

MonolithAmbass
ador
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Real World Example: SaaS Service
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Understanding TLS



Understanding TLS and SNI



Use-case 2: Internal (North/South) Routing

● Ability to control/route multi-tenant 
traffic

● Offload requirements such as 
○ Mapping (e.g. based on headers)
○ Retries and timeouts
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Use-case 3: Internal (East/West) Routing

● Ability to control/route any traffic
● Offload requirements such as 

○ Service discovery
○ Load balancing
○ Access control



Real World Example: SaaS Service
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Real World Example: Service Mesh
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Use-case 4: Traffic Shadowing

● Ability to test code/releases
● Leverage real traffic/load
● Minimize duplicated resources



Use-case 5: Software Development Testing with Telepresence (paid)

● Ability to test in production
● Ability to leverage production without 

impacting production



Configuration



Options by version

< 0.50.0

● Configmaps
● Annotations

>= 0.50.0

● Annotations

>= 0.70.0

● Annotations
● CRDs



Encryption

apiVersion: v1

kind: Service

metadata:

  annotations:

    getambassador.io/config: |

      ---

      apiVersion: ambassador/v0

      kind:  Module

      name:  tls

      ambassador_id: myID

      config:

        server:

          enabled: True

...

apiVersion: getambassador.io/v1

kind: Module

metadata:

  name: tls

  namespace: default

spec:

  ambassador_id: myID

  config:

    server:

      enabled: True

...
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Authentication

apiVersion: v1

kind: Service

metadata:

  annotations:

    getambassador.io/config: |

      ---

      apiVersion: ambassador/v0

      ambassador_id: myID

      kind:  AuthService

      name:  authentication

      auth_service: "auth:3000"

      path_prefix: "/auth/api/check"

      ---

      apiVersion: ambassador/v0

      kind:  Mapping

      ambassador_id: myID

      name: auth

      prefix: /auth/

      rewrite: /auth/

      service: auth:3000

...

apiVersion: getambassador.io/v1

kind: AuthService

metadata:

  name: authentication

  namespace: default

spec:

  ambassador_id: myID

  auth_service: "auth:3000"

  path_prefix: "/auth/api/check"

---

apiVersion: getambassador.io/v1

kind: Mapping

metadata:

  name: auth-mapping

  namespace: default

spec:

  ambassador_id: myID

  prefix: /auth/

  rewrite: /auth/

  service: auth:3000
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Mapping

apiVersion: v1

kind: Service

metadata:

  annotations:

    getambassador.io/config: |

      ---

      apiVersion: ambassador/v0

      kind:  Mapping

      name:  omnition-mapping

      ambassador_id: myID

      prefix: /

      host: omnition.io

      service: web.default.svc.cluster.local

...

apiVersion: getambassador.io/v1

kind: Mapping

metadata:

  name: omnition-mapping

  namespace: default

spec:

  ambassador_id: myID

  prefix: /

  host: omnition.io

  service: web.default.svc.cluster.local

...
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Tracing

apiVersion: v1

kind: Service

metadata:

  annotations:

    getambassador.io/config: |

      ---

      apiVersion: ambassador/v0

      kind: TracingService

      name: tracing

      ambassador_id: myID

      service: collector.default:9411

      driver: zipkin

...

apiVersion: getambassador.io/v1

kind: TracingService

metadata:

  name: tracing

  namespace: default

spec:

  ambassador_id: myID

  service: collector.default:9411

  driver: zipkin

...
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Lessons Learned



Dedicate Ambassadors per responsibility

● While this is possible and supported it 
is not ideal (e.g. availability, 
performance, etc)

● In some circumstances this is not 
possible (e.g. exposing 80 and 443 
from the same Ambassador instance)
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Dedicate Ambassadors per responsibility

● Different Ambassador “clusters” can 
be created via unique ambassador_id

● Each can be configured and scaled 
independently
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Understand timeouts

AWS ELB settings:

service.beta.kubernetes.io/aws-load-balancer-healthcheck-interval: "5"
service.beta.kubernetes.io/aws-load-balancer-healthcheck-timeout: "3"
service.beta.kubernetes.io/aws-load-balancer-healthcheck-unhealthy-threshold: "2"
service.beta.kubernetes.io/aws-load-balancer-healthcheck-healthy-threshold: "2"
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Ambassador timeout settings:

● Request timeout: timeout_ms (default = 3000ms)
● Idle timeout: idle_timeout_ms (default =300000ms)
● Connect timeout: connect_timeout_ms



Understand service discovery and load balancing

● Typically resolve to k8s service via DNS
○ Use: <service>
○ Use: <service>.<namespace>
○ Not: <service>.<namespace>.svc.cluster.local

● Alternatives
○ K8s endpoint routing
○ Consul routing
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● K8s service load balancing
● Alternatives

○ Round robin
○ Ring hash
○ Maglev

Am
bas
sad
or

Converter
Pod

Converter
Pod

Converter
Service



HTTP 503s
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HTTP 503s
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Others

● Great start, but work/money required
○ How will you handle authentication?
○ How will you handle circuit breaking?
○ How will you handle per-service retries?

● Store configuration with you service
○ Exception for authentication service
○ Everything through CI/CD

● Edge routing is much harder than internal
○ Encryption: end-to-end or terminated?
○ Authentication: which headers?

● Observability - critical, but immature
○ Tracing differs between releases (Envoy)
○ Metrics are not as granular (Envoy)
○ Diagnostic UI is basic and ugly



Questions?


