
TiKV Best Practices
Presented by Jinpeng Zhang

About me

● Engineer @PingCAP

● TiKV senior maintainer

● Author of book <Principle and Implementation of MariaDB>

● 10 years experience on Storage engine & System Performance

Agenda

● Theories

○ The topology of a TiKV cluster

○ Multi-Raft

○ Scale

○ Ecosystem

● Practices

○ Deployment

○ Elasticly scale

○ Fight with hotspot

○ Performance tuning

1st Part: Theories

1. The topology of a TiKV cluster

2. Multi-Raft

a. Region Split

b. Region Merge

3. Scale

a. Transfer Leader

b. Replication and balancing

4. Ecosystem

a. gRPC-rs

b. raft-rs

c. golang/rust/c clients

1 The topology of a TiKV cluster

Application via
MySQL Protocol

PD Cluster

DistSQL APITxnKV API
PD

PD PD

Metadata

TSO / Data Location

TiDB
TiDB TiDB

TiKV TiKV TiKV TiKV

Client
Txn/Raw KV API

Application with
TiKV Client

2 Multi-Raft

Region 5

Region 1

Region 3

TiKV node 1

Store 1

Region 4

RPC

Region 1

Region 2

TiKV node 2

Store 2

Region 3

RPC

Region 3

Region 1

Region 5

TiKV node 3

Store 3

RPC

Region 5

Region 2

TiKV node 4

Store 4

RPC

Client(TiDB or ti-client)

PD 1

PD 2

PD 3

Placement
Driver

Region 4

Region 4

PingCAP.com

2.1 Multi-Raft - Split

Region 1 Region 3 Region 2 Region 4

Region 2Region 1

Region 1

TiKV1

Region 1*:[a-e)

TiKV2

Region 1:[a-e)

TiKV3

Region 1:[a-e)

raft raft

2.1 Multi-Raft - Split

TiKV2

Region 1:[a-e)

TiKV3

Region 1:[a-e)

raft raft

TiKV1

Region 1.1:[a-c)

Region 1.2:[c-e)

2.1 Multi-Raft - Split

TiKV1

Region 1.1:[a-c)

Region 1.2:[c-e)

Split log (replicated by Raft)

Split log

TiKV2

Region 1:[a-e)

TiKV3

Region 1:[a-e)

2.1 Multi-Raft - Split

TiKV1

Region 1.1:[a-c)

Region 1.2:[c-e)

TiKV2

Region 1.1:[a-c)

Region 1.2:[c-e)

TiKV3

Region 1.1:[a-c)

Region 1.2:[c-e)

raft

raft

raft

raft

2.1 Multi-Raft - Split

PingCAP.com

3 Scale

Node A

Region 3

Node B Node C Node D

Region 3

Region 2 Region 2

Region 3

Region 1

Region 2

Region 1 Region 1

● 3 replicas for each region
● 1 leader and 2 followers for each region

PingCAP.com

3.1 Scale - Transfer leader

Node A

Region 3

Node B Node C Node D

Region 3

Region 2 Region 2

Region 3

Region 1

Region 2

Region 1 Region 1

● Region 1’s leader is on Node A

PingCAP.com

3.1 Scale - Transfer leader

Node A

Region 3

Node B Node C Node D

Region 3

Region 2 Region 2

Region 3

Region 1

Region 2

Region 1 Region 1

● Transfer to Node B

PingCAP.com

3.2 Scale - Initial state

Node A

Region 3

Node B Node C

Region 2* Region 2

Region 3*

Region 2

Region 1*

Region 3

Region 1Region 1

PingCAP.com

3.2 Scale - Add a new node

Node A

Region 3

Node B Node C

Region 2* Region 2

Region 3*

Region 2

Region 1*

Region 3

Region 1

Node D

Region 1

PingCAP.com

3.2 Scale - Add a replica in new node

Node A

Region 3

Node B Node C

Region 2* Region 2

Region 3*

Region 2

Region 1*

Region 3

Region 1

Node D

Region 1 Region 1

PingCAP.com

3.2 Scale - Remove a replica in old node

Node A

Region 3

Node B Node C

Region 2* Region 2

Region 3*

Region 2

Region 1*

Region 3

Node D

Region 1Region 1

PingCAP.com

4 Ecosystem
● Rust wrapper or gRPC https://github.com/pingcap/grpc-rs
● Raft Implemetation in Rust https://github.com/pingcap/raft-rs
● Clients

○ https://github.com/tikv/client-go
○ https://github.com/tikv/client-rust
○ https://github.com/tikv/client-java

https://github.com/pingcap/grpc-rs
https://github.com/pingcap/raft-rs
https://github.com/tikv/client-go
https://github.com/tikv/client-rust
https://github.com/tikv/client-java

2rd Part: Practices8

1. Deployment
a. Single DC deployment
b. Cross DC deployment

2. Elasticly Scale
a. Scale out
b. Scale in

3. Fight with hotspot
a. Good design to avoid hotspot
b. Finding hot read/write hotspot
c. Automatic hot region balancing based on statistics
d. Manually balance

4. Performance Tuning
a. How to find bottlenecks
b. Tuning under heavy read workload
c. Tuning under heavy write workload

1.1 Deployment - single IDC

host1

tikv1

tikv2

host2

tikv5
tikv6 tikv9

tikv10host3

host4

host5

host6

region1 region1
region2

region1

Client

tikv7 tikv8

pd2
rack2

tikv11 tikv12

pd3
rack3

tikv3 tikv4

pd1
rack1

tikv1 tikv2 tikv5 tikv6 tikv9 tikv10host1

host2

host3

host4

host5

host6
region1

region1region1

1.2 Deployment - Cross IDC

3-DC in 2 regions deployment

1.3 Demployment - Configurations

● Configurations of Deployment

 [replication]

 max-replicas = 3

 location-labels = [“zone”, “rack”, “host”]

● TiKV start with labels

 tikv-server --labels zone=”z1”,rack=”r1”,host=”h1”

 tikv-server --labels zone=”z2”,rack=”r2”,host=”h2”

PingCAP.com

2.1 Scale - Add new nodes

● Add new nodes is very simple, just start new TiKV nodes with correct pd address
○ tikv-server --addr 0.0.0.0:20171 --advertise-addr 172.16.4.56:20171 --status-addr

172.16.4.56:20181 --pd 172.16.4.51:2379,172.16.4.52:2379,172.16.4.53:2379 --data-dir
/data3/deploy/data --config conf/tikv.toml --log-file /data3/deploy/log/tikv.log

PingCAP.com

2.2 Scale - Remove old nodes

● Use pd-ctl to remove old nodes
○ >> store // Display informations of all stores

○ >> store [store-id] // Get the store informations for specified store

○ >> store delete [store-id] // Delete specified store,

● After delete store use pd-ctl the state of this store will turn to Offline from Up. Don’t close

the deleted store now, because the replication works of this store’s regions is still on-going

● After the deleted store’s status truns to Tombstone, you can stop this TiKV

3.1 Fight with hotspot
● Issues with write hotspot

○ Single node becomes the bottleneck of whole cluster

○ Balance cost

TiKV TiKV

TiKV TiKV

TiKV

TiKV

3.2 Fight with hotspots - Good design

TiKV TiKV

TiKV TiKV

TiKV

TiKV

random implicit tuple ID

● No incremental key

○ update-time = now()

○ auto incremental id

3.4 Fight with hotspots - Find write hotspot

3.5 Fight with hotspot - Find read hotspot
● Storage ReadPool handles KV read, Coprocessor handles DistSQL read

● Find which TiKV is more busier than others

3.6 Fight with hotspot - Auto balancing based
on statistics

● TiKV Collect the write/read flow for each regions

● TiKV Send heartbeat(with read/write flow for each regions) to PD

● PD learns from the collected data and distinguash hot write/read regions

● Balance hot regions between TiKVs

○ Transfer leader

○ Move replica

3.7 Fight with hotspot - Manual balance

● Small table only contains one region

● Read workload is heavy in this small table

● Split this region by hand

○ pd-ctl -u http://{pd-host}:{pd-port}

○ >> operator add split-region <region_id> [--policy=scan|approximate]

○ >> operator add split-region 1 --policy=approximate // Split Region 1 into two Regions in halves,
based on approximately estimated value

○ >> operator add split-region 1 --policy=scan // Split Region 1 into two Regions in halves, based
on accurate scan value

● Transfer leaders & move replicas of regions

○ >> operator add transfer-leader <region_id> <to_store_id>

○ >> operator add transfer-peer <region_id> <from_store_id> <to_store_id>

4.1 Performance tuning - Find bottlenecks
● Write

○ Does the raftstore thread pool is the bottleneck?

○ Does the apply thread pool is the bottleneck?

○ Does the DISK IO is the bottleneck?

○ Does the CPU is the bottleneck?

● Read

○ Does the storage read pool is the bottleneck?

○ How about the cache hit rate of RocksDB’s block-cache?

4.1 Performance tuning - Find bottlenecks

4.2 Performance tuning - Write in TiKV

Client(TiDB or ti-client)

TiKV node

write request

raftstore thread pool

apply thread pool

raft log (RocksDB) data (RocksDB)

replicate to other TiKVs

append log

apply

Version 3.0

[raftstore]
store-pool-size = 2
apply-pool-size = 2

scheduler pool
● transaction check
● raw kv operations will skip this part

[storage]
scheduler-worker-p
ool-size = 4

4.2 Performance tuning - Write
● Rafttore thread pool is busy

○ [raftstore] store-pool-size = 2

● Apply thread pool is busy

○ [raftstore] apply-pool-size = 2

● DISK IO util is high, use compression type with higher compression rate

○ compression-per-level = [“no”, “no”, “lz4”, “lz4”, “lz4”, “zstd”, “zstd”]

● CPU usage is high, use compression type with low CPU cost

○ compression-per-level = [“no”, “no”, “no”, “no”, “lz4”, “lz4”, “lz4”]

4.3 Performance tuning - Read in TiKV

Client(TiDB or ti-client)

TiKV node

read reqeust

data (RocksDB)

coprocessor
readpool

storage
readpool

kv read DistSQL read

[readpool.storage]
high-concurrency = 4
normal-concurrency = 4
low-concurrency = 4

[readpool.coprocessor]
default value is 80% *
core number
high-concurrency = 8
normal-concurrency = 8
low-concurrency = 9

4.3 Performance tuning - Read in RocksDB

● Get from memtable
● Get from block cache
● Reserve enough memory for

page cache (30%~50%)
● [storage.block-cache] capacity =

“20GB”

sst sst

sst sst sst sst

disk

memtable

memory

block cache

system
page cache

uncompressed block

compresse
d

block

get

Thank You !

