
Anatomy Of The Linux Kernel
Tanish Shinde

At the top is the user, or application, space. This is where the user
applications are executed. Below the user space is the kernel space.
Here, the Linux kernel exists.

There is also the GNU C Library (G-libc). This provides the system call
interface that connects to the kernel and provides the mechanism to
transition between the user-space application and the kernel. This is
important because the kernel and user application occupy different
protected address spaces. And while each user-space process occupies
its own virtual address space, the kernel occupies a single address
space.

The Linux kernel can be further div ided into three gross levels.
At the top is the system call interface, which implements the basic
functions such as read and write. Below the system call interface is the
kernel code, which can be more accurately defined as the
architecture-independent kernel code. This code is common to all of
the processor architectures supported by Linux. Below this is the
architecture-dependent code, which forms what is more commonly
called a BSP (Board Support Package). This code serves as the
processor and platform-specific code for the given architecture.

Fundamental Architecture Of Linux

Structural Decomposition Of
Linux System Call Interface,

Process Management & Network Stack

The SCI is a thin layer that provides the means to perform function calls
from user space into the kernel. As discussed previously, this interface can
be architecture dependent, even within the same processor family. The SCI
is actually an interesting function-call mult iplexing and demult iplexing
service. You can find the SCI implementation in . / l inux/ kernel, as wel l as
architecture-dependent portions in ./ l inux/arch.

Process management is focused on the execution of processes. In the
kernel, these are called threads and represent an individual virtualisation of
the processor (thread code, data, stack, and CPU registers). In user space,
the term process is typically used, though the Linux implementation does not
separate the two concepts (processes and threads). The kernel provides an
application program interface (API) through the SCI to create a new process
(fork, exec, or Portable Operating System Interface [POSIX] functions), stop a
process (ki l l , exit), and communicate and synchronise between them
(signal, or POSIX mechanisms).

Also in process management is the need to share the CPU between the
active threads. The kernel implements a novel scheduling algorithm that
operates in constant time, regardless of the number of threads vying for
the CPU. This is called the O(1) scheduler, denoting that the same amount of
time is taken to schedule one thread as it is to schedule many. The O(1)
scheduler also supports mult iple processors (called Symmetric
MultiProcessing, or SMP). You can find the process management sources
in . / l inux/kernel and architecture-dependent sources in ./ l inux/arch).

System Call Interface & Process
Management

The network stack, by design, follows a layered architecture modeled
after the protocols themselves. Recall that the Internet Protocol (IP) is
the core network layer protocol that sits below the transport protocol
(most commonly the Transmission Control Protocol, or TCP). Above TCP
is the sockets layer, which is invoked through the SCI.
The sockets layer is the standard API to the networking subsystem and
provides a user interface to a variety of networking protocols. From raw
frame access to IP protocol data units (PDUs) and up to TCP and the User
Datagram Protocol (UDP), the sockets layer provides a standardised way
to manage connections and move data between endpoints. You can find
the networking sources in the kernel at ./ l inux/ net.

The protocol stack or network stack is an implementation of a computer
networking protocol suite or protocol family . Some of these terms are used
interchangeably but strictly speaking, the suite is the definition of the
communication protocols , and the stack is the software implementation of
them. Individual protocols within a suite are often designed with a single
purpose in mind. This modularisation simplifies design and evaluation.
Because each protocol module usually communicates with two others, they
are commonly imagined as layers in a stack of protocols. The lowest protocol
always deals with low-level interaction with the communications hardware.
Each higher layer adds additional capabilities. User applications usually deal
only with the topmost layers.

Network Stack or Protocol
Stack

Structural Decomposition Of
Linux Memory Management

Structural Decomposition Of
Linux FileSystem

The virtual fi le system (VFS) is an interesting aspect of the Linux
kernel because it provides a common interface abstraction for
fi le systems. The VFS provides a switching layer between the
SCI and the fi le systems supported by the kernel.
At the top of the VFS is a common API abstraction of functions
such as open, close, read, and write. At the bottom of the VFS
are the fi le system abstractions that define how the upper-layer
functions are implemented. These are plug-ins for the given fi le
system (of which over 50 exist). You can find the fi le system
sources in ./ l inux/fs.
Below the fi le system layer is the buffer cache, which provides a
common set of functions to the fi le system layer (independent of
any particular fi le system). This caching layer optimizes access
to the physical devices by keeping data around for a short t ime
(or speculatively read ahead so that the data is available when
needed). Below the buffer cache are the device drivers, which
implement the interface for the particular physical device.

The Virtual File System

Structural Decomposition Of
Linux Device Drivers

Understanding Architecture
Dependent Code

While much of Linux is independent of the
architecture on which it runs, there are elements that
must consider the architecture for normal operation
and for efficiency. The ./ l inux/arch subdirectory
defines the architecture-dependent portion of the
kernel source contained in a number of subdirectories
that are specific to the architecture (collectively
forming the BSP). For a typical desktop, the i386
directory is used. Each architecture subdirectory
contains a number of other subdirectories that focus
on a particular aspect of the kernel, such as boot,
kernel, memory management, and others. You can
f ind the architecture-dependent code in ./ l inux/arch.

Architecture Dependent Code

1. The architecture-dependent code; it is under
the architecture-independent code, forms what
is usually referred to as a Board Support
Package or BSP – this contains a small
program called the bootloader that places the
Operating System and device drivers into
memory.

The architectural perspective of the Linux kernel
consists of: System call interface, Process
Management, the Virtual File system, Memory
Management, Network Stack, Architecture and the
Device Drivers.

Architecture Dependent Code

Questions

