
Wechat

Enterprise Case Study

https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1680513

Case Description

After numad is enabled and there are several
VMs running on the same host machine, the
softlockup messages can be observed inside the
VMs' dmesg.
CPU: 3 PID: 22468 Comm: kworker/u32:2 Not tainted 4.4.0-47-generic
#68-Ubuntu
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS
Ubuntu-1.8.2-1ubuntu1 04/01/2014
Workqueue: writeback wb_workfn (flush-252:0)
[<ffffffff81104388>] smp_call_function_many+0x1f8/0x260
[<ffffffff810727d5>] native_flush_tlb_others+0x65/0x150
[<ffffffff81072b35>] flush_tlb_page+0x55/0x90

This one seems a known issue. The bug is proactively handled by Linus when Dave Jones[3]
issued the bug which happened on the bare metal machine. Tinoco[2] also found the bug in
the nested KVM environment which happened when the IPI is sent out in the VCPU and it
seems the problem coming from the LAPIC simulation of VMX. Chris Arges also involved in
the debugging process and the debugging patch was given out by the Ingo Molnar, then Chris
added some hacks to print out the debugging information. Unfortunately, after a long
investigation, the root cause is still unknown.

Investigation on the VM side

[1]. smp/call: Detect stuck CSD locks https://patchwork.kernel.org/patch/6153801/

[2]. smp_call_function_single lockups https://lkml.org/lkml/2015/2/11/247

[3]. frequent lockups in 3.18rc4 https://lkml.org/lkml/2014/11/14/656

https://patchwork.kernel.org/patch/6153801/
https://lkml.org/lkml/2015/2/11/247
https://lkml.org/lkml/2014/11/14/656

I've prepared a hotfix kernel which would resend the IPI and print out
the information when the softlockup happens. Unfortunately, the
hotfix kernel doesn't print out the error message. That means my
original thoughts are incorrect!

The hotfix kernel source:
http://kernel.ubuntu.com/git/gavinguo/ubuntu-xenial.git/log/?h=sf000
103690-csd-lock-debug

Investigation on the VM side

http://kernel.ubuntu.com/git/gavinguo/ubuntu-xenial.git/log/?h=sf000103690-csd-lock-debug
http://kernel.ubuntu.com/git/gavinguo/ubuntu-xenial.git/log/?h=sf000103690-csd-lock-debug

As I cannot find the clue inside the VMs, then
try to investigate the host side.

Host Machine - Hung task Backtrace

ksmd

crash> bt 615

PID: 615 TASK: ffff881fa174a940 CPU: 15 COMMAND: "ksmd"

#0 [ffff881fa1087cc0] __schedule at ffffffff818207ee

#1 [ffff881fa1087d10] schedule at ffffffff81820ee5

#2 [ffff881fa1087d28] rwsem_down_read_failed at ffffffff81823d60

#3 [ffff881fa1087d98] call_rwsem_down_read_failed at ffffffff813f8324

#4 [ffff881fa1087df8] ksm_scan_thread at ffffffff811e613d

#5 [ffff881fa1087ec8] kthread at ffffffff810a0528

#6 [ffff881fa1087f50] ret_from_fork at ffffffff8182538f

Host Machine - Hung task Backtrace

khugepaged

crash> bt 616

PID: 616 TASK: ffff881fa1749b80 CPU: 11 COMMAND: "khugepaged"

#0 [ffff881fa108bc60] __schedule at ffffffff818207ee

#1 [ffff881fa108bcb0] schedule at ffffffff81820ee5

#2 [ffff881fa108bcc8] rwsem_down_write_failed at ffffffff81823b32

#3 [ffff881fa108bd50] call_rwsem_down_write_failed at ffffffff813f8353

#4 [ffff881fa108bda8] khugepaged at ffffffff811f58ef

#5 [ffff881fa108bec8] kthread at ffffffff810a0528

#6 [ffff881fa108bf50] ret_from_fork at ffffffff8182538f

Host Machine - Hung task Backtrace

qemu-system-x86

crash> bt 12555
PID: 12555 TASK: ffff885fa1af6040 CPU: 55 COMMAND: "qemu-system-x86"
#0 [ffff885f9a043a50] __schedule at ffffffff818207ee
#1 [ffff885f9a043aa0] schedule at ffffffff81820ee5
#2 [ffff885f9a043ab8] rwsem_down_read_failed at ffffffff81823d60
#3 [ffff885f9a043b28] call_rwsem_down_read_failed at ffffffff813f8324
#4 [ffff885f9a043b88] kvm_host_page_size at ffffffffc02cfbae [kvm]
#5 [ffff885f9a043ba8] mapping_level at ffffffffc02ead1f [kvm]
#6 [ffff885f9a043bd8] tdp_page_fault at ffffffffc02f0b8a [kvm]
#7 [ffff885f9a043c50] kvm_mmu_page_fault at ffffffffc02ea794 [kvm]
#8 [ffff885f9a043c80] handle_ept_violation at ffffffffc01acda3 [kvm_intel]
#9 [ffff885f9a043cb8] vmx_handle_exit at ffffffffc01afdab [kvm_intel]
#10 [ffff885f9a043d48] vcpu_enter_guest at ffffffffc02e026d [kvm]
#11 [ffff885f9a043dc0] kvm_arch_vcpu_ioctl_run at ffffffffc02e698f [kvm]
#12 [ffff885f9a043e08] kvm_vcpu_ioctl at ffffffffc02ce09d [kvm]
#13 [ffff885f9a043ea0] do_vfs_ioctl at ffffffff81220bef
#14 [ffff885f9a043f10] sys_ioctl at ffffffff81220e59

#15 [ffff885f9a043f50] entry_SYSCALL_64_fastpath at ffffffff81824ff2

Host Machine - Hung task Backtrace

We can see that the previous three tasks are waiting on the
mmap_sem. The most interesting part is the backtrace of numad:

crash> bt 2950 The disassembly analysis of numad call stack
#1 [ffff885f8fb4fb78] smp_call_function_many
#2 [ffff885f8fb4fbc0] native_flush_tlb_others
#3 [ffff885f8fb4fc08] flush_tlb_page
#4 [ffff885f8fb4fc30] ptep_clear_flush
#5 [ffff885f8fb4fc60] try_to_unmap_one
#6 [ffff885f8fb4fcd0] rmap_walk_ksm
#7 [ffff885f8fb4fd28] rmap_walk
#8 [ffff885f8fb4fd80] try_to_unmap
#9 [ffff885f8fb4fdc8] migrate_pages
#10 [ffff885f8fb4fe80] do_migrate_pages

Host Machine - Hung task Backtrace

https://static.sched.com/hosted_files/kccncosschn19eng/02/gavin_numad_call_trace_disassembly.lst

I've tried to disassemble the code and finally find the stable_node->hlist is as long as
2306920 entries(Around 9.2GB memory merged into one page).

rmap_item list(stable_node->hlist):

stable_node: 0xffff881f836ba000 stable_node->hlist->first = 0xffff883f3e5746b0

struct hlist_head {
 [0] struct hlist_node *first;
}

struct hlist_node {
[0] struct hlist_node *next;
[8] struct hlist_node **pprev;
}

crash> list hlist_node.next 0xffff883f3e5746b0 > rmap_item.lst
$ wc -l rmap_item.lst
2306920 rmap_item.lst

KSM merge list extraction

stable_node

stable_node stable_node

stable_nodestable_node

stable_node

stable_node stable_node stable_node

0 1 2 3

/sys/kernel/mm/ksm/merge_across_node=0

rmap_item rmap_item rmap_item

rmap_item

rmap_item rmap_item

rmap_itemrmap_item

rmap_item

rmap_item rmap_item rmap_item

0 1 2 3

root_unstable_tree[nr_node_ids]root_stable_tree[nr_node_ids]

The merge list is as long as
2306920 entries.

Automatic NUMA balancing
Local/Remote access

Cpu 0 Cpu 1 Cpu 2 Cpu 3 Cpu 4 Cpu 5 Cpu 6 Cpu 7

Process A

page pagepage

page page page

page page page

page page page

Process B Process C Process D Process E Process F Process G Process H

Local access

Remote access Node 0 Node 1

According to the memory access latency, it
would be better to migrate Process D to
node 1 and Process E to node 0. The
remote access page by Process A can be
migrated to node 0. However, it would also
need to consider the CPU loading before
migrating the processes.

https://kernel.ubuntu.com/~gavinguo/sf00131845/numa-131845.svg

FlameGraph of the performance problem

When migrating the ksm pages, numad needs to call the IPI to flush
the related TLB entries in CPUs which ever used the PTE.

https://kernel.ubuntu.com/~gavinguo/sf00131845/numa-131845.svg

Re: [PATCH 1/1] ksm: introduce ksm_max_page_sharing per page
deduplication limit
https://www.spinics.net/lists/linux-mm/msg125880.html

80b18dfa53bb ksm: optimize refile of stable_node_dup at the head of the
chain

8dc5ffcd5a74 ksm: swap the two output parameters of chain/chain_prune

0ba1d0f7c41c ksm: cleanup stable_node chain collapse case

b4fecc67cc56 ksm: fix use after free with merge_across_nodes = 0

2c653d0ee2ae ksm: introduce ksm_max_page_sharing per page
deduplication limit

Solution

https://www.spinics.net/lists/linux-mm/msg125880.html

